Systems Genetics of Complex Traits in Drosophila melanogaster

Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically intercorrelated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression and transcription factor binding sites. The high degree of transcriptional connectivity allows us to infer genetic networks and the function of predicted genes from annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provide insight into the molecular basis of pleiotropy between complex traits.

[1]  A. Robertson,et al.  Fitness as a Measurable Character in Drosophila. , 1957, Genetics.

[2]  H. Grüneberg,et al.  Introduction to quantitative genetics , 1960 .

[3]  R. A. Brink,et al.  Heritage from Mendel. , 1967 .

[4]  H. Jungen,et al.  ESTIMATION OF AVERAGE FITNESS OF POPULATIONS OF DROSOPHILA MELANOGASTER AND THE EVOLUTION OF FITNESS IN EXPERIMENTAL POPULATIONS , 1979, Evolution; international journal of organic evolution.

[5]  W. Ewens Genetics and analysis of quantitative traits , 1999 .

[6]  J. Cheverud Genetics and analysis of quantitative traits , 1999 .

[7]  Tim Tully,et al.  nalyot, a Mutation of the Drosophila Myb-Related Adf1 Transcription Factor, Disrupts Synapse Formation and Olfactory Memory , 2000, Neuron.

[8]  Russell D. Wolfinger,et al.  The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster , 2001, Nature Genetics.

[9]  M. Wolfner,et al.  Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. , 2001, Journal of insect physiology.

[10]  H. Sawai,et al.  Rapid Evolution of the Male-Specific Antibacterial Protein Andropin Gene in Drosophila , 2002, Journal of Molecular Evolution.

[11]  D. Sabatini,et al.  mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery , 2002, Cell.

[12]  G. Churchill,et al.  Variation in gene expression within and among natural populations , 2002, Nature Genetics.

[13]  R. Stoughton,et al.  Genetics of gene expression surveyed in maize, mouse and man , 2003, Nature.

[14]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[15]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Molony,et al.  Genetic analysis of genome-wide variation in human gene expression , 2004, Nature.

[17]  E. Schadt,et al.  Genetic inheritance of gene expression in human cell lines. , 2004, American journal of human genetics.

[18]  Y. Ohsumi,et al.  Autophagy in yeast: a TOR-mediated response to nutrient starvation. , 2004, Current topics in microbiology and immunology.

[19]  J. Mahaffey,et al.  An interactive network of zinc-finger proteins contributes to regionalization of the Drosophila embryo and establishes the domains of HOM-C protein function , 2004, Development.

[20]  E. Petretto,et al.  Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease , 2005, Nature Genetics.

[21]  Robert W. Williams,et al.  Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function , 2005, Nature Genetics.

[22]  T. Mackay,et al.  Genetics and genomics of Drosophila mating behavior , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Chapman,et al.  Sex Peptide Causes Mating Costs in Female Drosophila melanogaster , 2005, Current Biology.

[24]  Joshua T. Burdick,et al.  Mapping determinants of human gene expression by regional and genome-wide association , 2005, Nature.

[25]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Hunt,et al.  Genome-Wide Associations of Gene Expression Variation in Humans , 2005, PLoS genetics.

[27]  T. Mackay,et al.  Of flies and man: Drosophila as a model for human complex traits. , 2006, Annual review of genomics and human genetics.

[28]  E. Sánchez-Herrero,et al.  Requirement of abdominal-A and Abdominal-B in the developing genitalia of Drosophila breaks the posterior downregulation rule , 2006, Development.

[29]  T. Mackay,et al.  Pleiotropic fitness effects of the Tre1-Gr5a region in Drosophila melanogaster , 2006, Nature Genetics.

[30]  T. Mackay,et al.  Quantitative Genomics of Aggressive Behavior in Drosophila melanogaster , 2006, PLoS genetics.

[31]  T. Mackay,et al.  Quantitative genomics of locomotor behavior in Drosophila melanogaster , 2007, Genome Biology.

[32]  Trudy F C Mackay,et al.  Dynamic Genetic Interactions Determine Odor-Guided Behavior in Drosophila melanogaster , 2006, Genetics.

[33]  William Valdar,et al.  Genetic and Environmental Effects on Complex Traits in Mice , 2006, Genetics.

[34]  G. Gibson,et al.  Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster , 2007, Nature Genetics.

[35]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[36]  B. Oliver,et al.  Demasculinization of X chromosomes in the Drosophila genus , 2007, Nature.

[37]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[38]  Hans Ellegren,et al.  The evolution of sex-biased genes and sex-biased gene expression , 2007, Nature Reviews Genetics.

[39]  Sudhir Kumar,et al.  Constraint and turnover in sex-biased gene expression in the genus Drosophila , 2007, Nature.

[40]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[41]  M. Wolfner "S.P.E.R.M." (seminal proteins (are) essential reproductive modulators): the view from Drosophila. , 2007, Society of Reproduction and Fertility supplement.

[42]  Eric E. Schadt,et al.  Moving toward a system genetics view of disease , 2007, Mammalian Genome.

[43]  T. Mackay,et al.  Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster , 2007, Genome Biology.

[44]  Trudy F C Mackay,et al.  Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster , 2008, Proceedings of the National Academy of Sciences.

[45]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[46]  Joshua L. Goodman,et al.  FlyBase: integration and improvements to query tools , 2007, Nucleic Acids Res..

[47]  Jing Wang,et al.  Using FlyAtlas to identify better Drosophila models of human disease , 2008 .

[48]  A. Wong,et al.  Evidence for positive selection on Drosophila melanogaster seminal fluid protease homologs. , 2008, Molecular biology and evolution.

[49]  D. Hartl,et al.  Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression , 2008, Proceedings of the National Academy of Sciences.

[50]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[51]  S. Horvath,et al.  Variations in DNA elucidate molecular networks that cause disease , 2008, Nature.