Testing model assumptions in multivariate linear regression models

In the multivariate nonparametric regression model Y = gt(t)+∑ the problem of testing linearity of the regression function g and homoscedasticity of the distribution of the error e is considered. For both problems a simple test is derived which is based on estimating the L2 distance between the model space and the space induced by the hypothesis. The resulting statistics can be shown to be asymptotically normal, even under fixed alternatives. This extends and unifies recent results of Dette and Munk (1998a,b) to the multivariate case. A small simulation study on the finite sample behaviour of the proposed tests is reported and their properties are illustrated by analyzing a data example.

[1]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[2]  Anthony C. Davison,et al.  Regression model diagnostics , 1992 .

[3]  Hans-Georg Müller,et al.  On a Semiparametric Variance Function Model and a Test for Heteroscedasticity , 1995 .

[4]  Peter Hall,et al.  Bootstrap test for difference between means in nonparametric regression , 1990 .

[5]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[6]  Clifford H. Spiegelman,et al.  Testing the Goodness of Fit of a Linear Model via Nonparametric Regression Techniques , 1990 .

[7]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[8]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[9]  Radakovič The theory of approximation , 1932 .

[10]  E. R. Shillington,et al.  Testing lack of fit in regression without replication , 1979 .

[11]  James W. Neill,et al.  Testing Linear Regression Function Adequacy without Replication , 1985 .

[12]  J. Sacks,et al.  Designs for Regression Problems with Correlated Errors III , 1966 .

[13]  Holger Dette,et al.  Validation of linear regression models , 1998 .

[14]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[15]  Warren E. Stewart,et al.  Parameter estimation from multiresponse data , 1992 .

[16]  J. Zheng,et al.  A consistent test of functional form via nonparametric estimation techniques , 1996 .

[17]  Peter R. Nelson,et al.  Multiple Comparisons: Theory and Methods , 1997 .

[18]  Holger Dette,et al.  Testing heteroscedasticity in nonparametric regression , 1998 .

[19]  Steven Orey,et al.  A central limit theorem for $m$-dependent random variables , 1958 .

[20]  Adrian Bowman,et al.  On the Use of Nonparametric Regression for Checking Linear Relationships , 1993 .

[21]  J. Shao,et al.  Resampling estimation when observations are m–dependent , 1988 .

[22]  Andrew Heathcote,et al.  On the Use of Nonparametric Regression in , 2002 .

[23]  Adrian Bowman,et al.  Testing for constant variance in a linear model , 1997 .

[24]  Douglas G. Simpson,et al.  Testing for additivity in nonparametric regression , 1995 .