Stability of Monotone Variational Inequalities with Various Applications

The convergence and stability theory of Mosco is extended by the more general approach of monotone - convex functionals and by weakening uniform equimonotonicity and equicoervity assumptions to semicoervity conditions. The abstract theory is firstly applied to a finite dimensional Variational Inequality that models distributed market equilibria with box constraints providing a stability result with respect to the upper bounds. Then it is applied to obtain stability results with respect to coefficients and unilateral constraints in p-harmonic elliptic unilateral boundary value problems that can be considered as scalar models of the unilateral contact problem without, respectively with given friction.

[1]  Werner Fenchel Über konvexe Funktionen mit vorgeschriebenen Niveaumannigfaltigkeiten , 1955 .

[2]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[3]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[4]  Friedrich Stummel,et al.  Diskrete Konvergenz linearer Operatoren. I , 1970 .

[5]  Aldo Ghizzetti,et al.  Theory and applications of monotone operators , 1970 .

[6]  Galerkins Lösungsnäherungen bei monotonen Abbildungen , 1972 .

[7]  G. Fichera Boundary Value Problems of Elasticity with Unilateral Constraints , 1973 .

[8]  Nobuyuki Kenmochi,et al.  Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations , 1974 .

[9]  Friedrich Stummel,et al.  1.—Perturbation Theory for Sobolev Spaces , 1975, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[11]  J. Lagnese Perturbations in variational inequalities , 1976 .

[12]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[13]  Joachim Gwinner,et al.  Nichtlineare Variationsungleichungen mit Anwendungen , 1978 .

[14]  P. Lions Two remarks on the convergence of convex functions and monotone operators , 1978 .

[15]  S. Itoh,et al.  Variational inequalities and complementarity problems , 1978 .

[16]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[17]  F. Scarpini Some nonlinear complementarity systems algorithms and applications to unilateral boundary-value problems , 1980 .

[18]  Stella Dafermos,et al.  Traffic Equilibrium and Variational Inequalities , 1980 .

[19]  M. Kučera,et al.  Perturbations of variational inequalities and rate of convergence of solutions , 1980 .

[20]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[21]  L. Boccardo,et al.  Existence and stability results for solutions of some strongly nonlinear constrained problems , 1981 .

[22]  H. Attouch Variational convergence for functions and operators , 1984 .

[23]  Anna Nagurney,et al.  Sensitivity analysis for the asymmetric network equilibrium problem , 1984, Math. Program..

[24]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[25]  P. Panagiotopoulos Inequality problems in mechanics and applications , 1985 .

[26]  Franco Tomarelli,et al.  Some existence results on noncoercive variational inequalities , 1986 .

[27]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .

[28]  L. McLinden,et al.  Stable monotone variational inequalities , 1990, Math. Program..

[29]  Stella Dafermos,et al.  Exchange price equilibria and variational inequalities , 1990, Math. Program..

[30]  Anna Nagurney,et al.  Disequilibrium and variational inequalities , 1990 .

[31]  J. Gwinner,et al.  Discretization of semicoercive variational inequalities , 1991 .

[32]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[33]  Joachim Gwinner,et al.  A boundary element procedure for contact problems in plane linear elastostatics , 1993 .

[34]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[35]  J. Gwinner A Discretization Theory for Monotone Semicoercive Problems and Finite Element Convergence for p-Harmonic Signorini Problems , 1994 .