A linear-time algorithm for the bottleneck transportation problem with a fixed number of sources
暂无分享,去创建一个
[1] Wlodzimierz Szwarc. An instant solution of the 2 × n bottleneck transportation problem , 1993, Oper. Res. Lett..
[2] Donald L. Adolphson,et al. A Linear Time Algorithm for a 2 × n Transportation Problem , 1977, SIAM J. Comput..
[3] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[4] Nimrod Megiddo,et al. Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.
[5] Robert Garfinkel,et al. The bottleneck transportation problem , 1971 .
[6] Ravi Varadarajan. An optimal algorithm for 2 × n bottleneck transportation problems , 1991, Oper. Res. Lett..
[7] W. T. Tutte. A Short Proof of the Factor Theorem for Finite Graphs , 1954, Canadian Journal of Mathematics.
[8] Charles U. Martel,et al. Fast Algorithms for Bipartite Network Flow , 1987, SIAM J. Comput..
[9] Eitan Zemel,et al. An O(n) Algorithm for the Linear Multiple Choice Knapsack Problem and Related Problems , 1984, Inf. Process. Lett..
[10] Martin Dyer,et al. AN O(n) ALGORITHM FOR THE MULTIPLE-CHOICE , 2007 .
[11] D. Gale. A theorem on flows in networks , 1957 .
[12] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[13] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.
[14] Manuel Blum,et al. Time Bounds for Selection , 1973, J. Comput. Syst. Sci..