Graphene reinforced metal and ceramic matrix composites: a review

ABSTRACT This review critically examines the current state of graphene reinforced metal (GNP-MMC) and ceramic matrix composites (GNP-CMC). The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics. This review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements. The review discusses processing techniques, effects of graphene on the mechanical behaviour of GNP-MMCs and GNP-CMCs, including early studies on the tribological performance of graphene-reinforced composites, where graphene has shown signs of serving as a protective and lubricious phase. Additionally, the unique functional properties endowed by graphene to GNP-MMCs and GNP-CMCs, such as enhanced thermal/electrical conductivity, improved oxidation resistance, and excellent biocompatibility are overviewed. Directions for future research endeavours that are needed to advance the field and to propel technological maturation are provided.

[1]  J. Schoenung,et al.  Microscale tribological behavior and in vitro biocompatibility of graphene nanoplatelet reinforced alumina. , 2016, Journal of the mechanical behavior of biomedical materials.

[2]  Zhangcheng,et al.  Ultrathin graphene tribofilm formation during wear of Al2O3–graphene composites , 2016 .

[3]  William E Lee,et al.  Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering , 2016 .

[4]  S. Grasso,et al.  Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites , 2016 .

[5]  W. Choi,et al.  Graphene : Synthesis and Applications , 2016 .

[6]  S. Biamino,et al.  Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets , 2016 .

[7]  Haibin Zhang,et al.  Electrically conductive graphene nanoplatelet/boron carbide composites with high hardness and toughness , 2016 .

[8]  P. Ciambelli,et al.  Electrochemical Applications of Magnetic Core-Shell Graphene-Coated FeCo Nanoparticles , 2016 .

[9]  C. Balázsi,et al.  High orientation degree of graphene nanoplatelets in silicon nitride composites prepared by spark plasma sintering , 2016 .

[10]  M. Belmonte,et al.  Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers , 2015 .

[11]  Zhihua Yang,et al.  Spark plasma sintering and toughening of graphene platelets reinforced SiBCN nanocomposites , 2015 .

[12]  Zhihua Yang,et al.  Ablation behavior of graphene reinforced SiBCN ceramics in an oxyacetylene combustion flame , 2015 .

[13]  S. M. Lee,et al.  A scalable and facile synthesis of alumina/exfoliated graphite composites by attrition milling , 2015 .

[14]  I. Ahmad,et al.  Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route , 2015, Journal of Materials Engineering and Performance.

[15]  Marc Thomas,et al.  An Innovative Way to Produce γ‐TiAl Blades: Spark Plasma Sintering , 2015 .

[16]  B. Li,et al.  Fabrication and properties of graphene reinforced silicon nitride composite materials , 2015 .

[17]  F. Pan,et al.  Improved mechanical properties of magnesium–graphene composites with copper–graphene hybrids , 2015 .

[18]  S. Grasso,et al.  Scratch behaviour of graphene alumina nanocomposites , 2015 .

[19]  A. Kawasaki,et al.  Highly strain tolerant and tough ceramic composite by incorporation of graphene , 2015 .

[20]  Xiaoyun Li,et al.  Mechanical, electrical, and thermal properties of graphene nanosheet/aluminum nitride composites , 2015 .

[21]  A. Centeno,et al.  Wear behavior of graphene/alumina composite , 2015 .

[22]  I. Ahmad,et al.  Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites , 2015, Scientific Reports.

[23]  Jiecai Han,et al.  Graphene nanosheet reinforced ZrB2–SiC ceramic composite by thermal reduction of graphene oxide , 2015 .

[24]  Wenzheng Zhai,et al.  Tribological behavior of TiAl matrix self-lubricating composites reinforced by multilayer graphene , 2015 .

[25]  J. Schoenung,et al.  Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement , 2015 .

[26]  P. Klimczyk,et al.  Thermal properties of pressure sintered alumina–graphene composites , 2015, Journal of Thermal Analysis and Calorimetry.

[27]  J. Schoenung,et al.  Field assisted sintering of graphene reinforced zirconia ceramics , 2015 .

[28]  S. Hussain,et al.  Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets , 2015 .

[29]  S. Yannopoulos,et al.  Laser processing of SiC: From graphene-coated SiC particles to 3D graphene froths , 2015 .

[30]  M. Mehrali,et al.  Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. , 2015, Materials science & engineering. C, Materials for biological applications.

[31]  C. Balázsi,et al.  Spark plasma sintering of graphene reinforced hydroxyapatite composites , 2015 .

[32]  J. Dutkiewicz,et al.  Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets , 2015 .

[33]  S. Hussain,et al.  Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al + GNPs) using semi powder metallurgy method , 2015 .

[34]  Wenzheng Zhai,et al.  High-Temperature Tribological Performance of TiAl Matrix Composites Reinforced by Multilayer Graphene , 2015, Tribology Letters.

[35]  Hongjian Guo,et al.  The Tribological Properties of NiCr–Al2O3–TiO2 Composites at Elevated Temperatures , 2015, Tribology Letters.

[36]  Xueding Wang,et al.  Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling , 2015 .

[37]  Mehdi Shahedi Asl,et al.  Characterization of hot-pressed graphene reinforced ZrB 2 –SiC composite , 2015 .

[38]  Junha Shin,et al.  Strengthening behavior of few-layered graphene/aluminum composites , 2015 .

[39]  Jun Gou,et al.  Development of magnesium-graphene nanoplatelets composite , 2015 .

[40]  L. Jaworska,et al.  Machinability tests using ceramic tools reinforced by nickel-coated graphene , 2015 .

[41]  Wong Cheng Lee,et al.  Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. , 2015, Small.

[42]  Yuchi Fan,et al.  Preparation and Mechanical Properties of Graphene Nanosheet Reinforced Alumina Composites , 2015 .

[43]  E. Toyserkani,et al.  Additive Manufacturing of Graphene–Hydroxyapatite Nanocomposite Structures , 2015 .

[44]  X. M. Zhang,et al.  Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles , 2015 .

[45]  P. Klimczyk,et al.  The influence of the graphene additive on mechanical properties and wear of hot-pressed Si3N4 matrix composites , 2015 .

[46]  Wonbaek Kim,et al.  The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating , 2015 .

[47]  Seok-Jae Lee,et al.  Enhanced properties of nanostructured ZrO2–graphene composites rapidly sintered via high-frequency induction heating , 2015 .

[48]  H. Seiner,et al.  Anisotropic Elastic and Acoustic Properties of Bulk Graphene Nanoplatelets Consolidated by Spark Plasma Sintering , 2015 .

[49]  Weiwei Zhou,et al.  Control of doping by matrix in few-layer graphene/ metal oxide composites with highly enhanced electrical conductivity , 2015 .

[50]  R. Peréz-Bustamante,et al.  Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying , 2014 .

[51]  T. Vo,et al.  Structural stability studies of graphene in sintered ceramic nanocomposites , 2014 .

[52]  F. Pan,et al.  Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) , 2014 .

[53]  Xufeng Zhou,et al.  Applications of Graphene in Supercapacitors , 2014 .

[54]  P. Šajgalík,et al.  Effect of homogenization treatment on the fracture behaviour of silicon nitride/graphene nanoplatelets composites , 2014 .

[55]  S. Harimkar,et al.  Effect of Graphene Nanoplate and Silicon Carbide Nanoparticle Reinforcement on Mechanical and Tribological Properties of Spark Plasma Sintered Magnesium Matrix Composites , 2014 .

[56]  S. Grasso,et al.  In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite , 2014 .

[57]  Csaba Balázsi,et al.  Wear damage of Si3N4-graphene nanocomposites at room and elevated temperatures , 2014 .

[58]  Yafei Chen,et al.  Microstructure and fracture toughness of graphene nanosheets/alumina composites , 2014 .

[59]  Mingji Li,et al.  Synthesis of nickel nanosheet/graphene composites for biosensor applications , 2014 .

[60]  S. Hong,et al.  Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process , 2014 .

[61]  Yao Chen,et al.  Interfacial stress transfer in a graphene nanosheet toughened hydroxyapatite composite , 2014 .

[62]  Wenzheng Zhai,et al.  The Enhanced Tribological Properties of NiAl Intermetallics: Combined Lubrication of Multilayer Graphene and WS2 , 2014, Tribology Letters.

[63]  Wenzheng Zhai,et al.  Formation of friction layer of Ni3Al matrix composites with micro- and nano-structure during sliding friction under different loads , 2014 .

[64]  A. Zurutuza,et al.  Challenges and opportunities in graphene commercialization. , 2014, Nature nanotechnology.

[65]  N. A. Kadri,et al.  Mechanical and In Vitro Biological Performance of Graphene Nanoplatelets Reinforced Calcium Silicate Composite , 2014, PloS one.

[66]  S. Grasso,et al.  Tribological properties of silica-graphene nano-platelet composites , 2014 .

[67]  Liping Huang,et al.  Microstructure and wear behavior of graphene nanosheets-reinforced zirconia coating , 2014 .

[68]  H. Yan,et al.  Spark Plasma Sintering of Alumina Composites with Graphene Platelets and Silicon Carbide Nanoparticles , 2014 .

[69]  F. Pan,et al.  Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium , 2014 .

[70]  C. Ramírez,et al.  Toughening in ceramics containing graphene fillers , 2014 .

[71]  Jie Yao,et al.  Effect of counterface balls on the friction layer of Ni3Al matrix composites with 1.5 wt% graphene nanoplatelets , 2014, Tribology Letters.

[72]  Paolo Ciambelli,et al.  Selective graphene covering of monodispersed magnetic nanoparticles , 2014 .

[73]  S. Hur,et al.  Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing , 2014 .

[74]  Rodney S. Ruoff,et al.  Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix , 2014, Scientific Reports.

[75]  Y. Wan,et al.  An Efficient Route for the Synthesis of Aluminum Nitride/Graphene Nanohybrids , 2014 .

[76]  H. Zheng,et al.  Thermal Conductivity and Interface Thermal Conductance in Composites of Titanium With Graphene Platelets , 2014 .

[77]  M. Guagliano,et al.  Cold spray coating: review of material systems and future perspectives , 2014 .

[78]  Xiaoming Yang,et al.  Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids , 2014 .

[79]  Muhammad Asif,et al.  Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method , 2014 .

[80]  W. Kim,et al.  Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties , 2014 .

[81]  Shiren Wang,et al.  Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering , 2014 .

[82]  Mohammad Mehrali,et al.  Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. , 2014, ACS applied materials & interfaces.

[83]  Wenzheng Zhai,et al.  Grain refinement: A mechanism for graphene nanoplatelets to reduce friction and wear of Ni3Al matrix self-lubricating composites , 2014 .

[84]  T. Beechem,et al.  Lithographically defined porous Ni-carbon nanocomposite supercapacitors. , 2014, Nanoscale.

[85]  H. Che,et al.  Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles , 2014, Journal of Materials Science.

[86]  M. Terrones,et al.  Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets , 2014 .

[87]  A. Kawasaki,et al.  The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites , 2014 .

[88]  Wenzheng Zhai,et al.  Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene , 2014 .

[89]  Amit Kumar,et al.  Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow , 2014 .

[90]  Hua Li,et al.  Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties , 2014 .

[91]  X. Lü,et al.  Directional architecture of graphene/ceramic composites with improved thermal conduction for thermal applications , 2014 .

[92]  C. Jia,et al.  Enhanced strength in bulk graphene–copper composites , 2014 .

[93]  Eila,et al.  Graphene Oxide Synthesized by using Modified Hummers Approach , 2014 .

[94]  A. Centeno,et al.  Graphene for tough and electroconductive alumina ceramics , 2013 .

[95]  K. Benthem,et al.  Evidence of surface cleaning during electric field assisted sintering , 2013 .

[96]  Robert H. Hurt,et al.  All in the graphene family - A recommended nomenclature for two-dimensional carbon materials , 2013 .

[97]  Taek-Soo Kim,et al.  Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular‐Level Mixing Process , 2013, Advanced materials.

[98]  A. Nieto,et al.  Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites. , 2013, ACS applied materials & interfaces.

[99]  A. Nieto,et al.  Nanodynamic mechanical behavior of graphene nanoplatelet-reinforced tantalum carbide , 2013 .

[100]  S. Grasso,et al.  Graphene reinforced alumina nano-composites , 2013 .

[101]  A. Nieto,et al.  Graphene NanoPlatelets reinforced tantalum carbide consolidated by spark plasma sintering , 2013 .

[102]  C. Balázsi,et al.  Influence of processing on fracture toughness of Si3N4+graphene platelet composites , 2013 .

[103]  C. Balázsi,et al.  Tribological properties of Si3N4–graphene nanocomposites , 2013 .

[104]  Y. Wan,et al.  Synthesis of aluminum nitride nanoparticles by a facile urea glass route and influence of urea/metal molar ratio , 2013 .

[105]  M. Terrones,et al.  In situ processing of electrically conducting graphene/SiC nanocomposites , 2013 .

[106]  Yanjie Liang,et al.  Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite , 2013 .

[107]  Jesus Gonzalez-Julian,et al.  The beneficial effect of graphene nanofillers on the tribological performance of ceramics , 2013 .

[108]  Yao Chen,et al.  A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility , 2013 .

[109]  A. Kalkan,et al.  Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites , 2013 .

[110]  H. Yan,et al.  Mechanical properties of graphene platelet-reinforced alumina ceramic composites , 2013 .

[111]  Lei Liu,et al.  Graphene–nickel composites , 2013 .

[112]  U. Chaudhary,et al.  Photocatalytic activity of spark plasma sintered TiO2–graphene nanoplatelet composite , 2013 .

[113]  J. Dai,et al.  Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells , 2013, Scientific Reports.

[114]  T. V. Venkatesha,et al.  Preparation and corrosion behavior of Ni and Ni–graphene composite coatings , 2013 .

[115]  K. S. Coleman,et al.  Graphene Synthesis. Relationship to Applications , 2013 .

[116]  Hua Li,et al.  Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. , 2013, Journal of materials chemistry. B.

[117]  C. Ramírez,et al.  Characterization of graphene nanoplatelets-Si3N4 composites by Raman spectroscopy , 2013 .

[118]  M. Belmonte,et al.  Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites , 2013 .

[119]  P. Ciambelli,et al.  A study of the key parameters, including the crucial role of H2 for uniform graphene growth on Ni foil , 2013 .

[120]  M. Mahdi,et al.  Preparation of graphene oxide stabilized nickel nanoparticles with thermal effusivity properties by laser ablation method , 2013 .

[121]  H. Yan,et al.  Toughening of zirconia/alumina composites by the addition of graphene platelets , 2012 .

[122]  El-Sayed M. Sherif,et al.  Effects of sintering temperature and graphite addition on the mechanical properties of aluminum , 2012 .

[123]  A. Nieto,et al.  Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering , 2012 .

[124]  C. Balázsi,et al.  Microstructure and fracture toughness of Si3N4 + graphene platelet composites , 2012 .

[125]  Yan Peng Liu,et al.  Fluorinated Graphene for Promoting Neuro‐Induction of Stem Cells , 2012, Advanced materials.

[126]  F. Figueiredo,et al.  Graphene nanoplatelet/silicon nitride composites with high electrical conductivity , 2012 .

[127]  K. Novoselov,et al.  The mechanics of graphene nanocomposites: A review , 2012 .

[128]  Kailong. Zhang Fabrication of copper nanoparticles/graphene oxide composites for surface-enhanced Raman scattering , 2012 .

[129]  Xiaochun Li,et al.  Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites , 2012 .

[130]  Santanu Das,et al.  Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime. , 2012, ACS nano.

[131]  C. Balázsi,et al.  Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites , 2012 .

[132]  K. Khalil,et al.  Effect of high-frequency induction heat sintering conditions on the microstructure and mechanical properties of nanostructured magnesium/hydroxyapatite nanocomposites , 2012 .

[133]  Di Zhang,et al.  Reinforcement with graphene nanosheets in aluminum matrix composites , 2012 .

[134]  Y. Sakka,et al.  High-pressure spark plasma sintering of MgO-doped transparent alumina , 2012 .

[135]  Nick Birbilis,et al.  Exploring graphene as a corrosion protection barrier , 2012 .

[136]  K. Bolotin,et al.  Graphene: corrosion-inhibiting coating. , 2012, ACS nano.

[137]  Xiaolong Chen,et al.  Graphene covered SiC powder as advanced photocatalytic material , 2012 .

[138]  K. Jagannadham Volume Fraction of Graphene Platelets in Copper-Graphene Composites , 2012, Metallurgical and Materials Transactions A.

[139]  C. Balázsi,et al.  Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites , 2012 .

[140]  A. Keshri,et al.  Carbon nanotubes improve the adhesion strength of a ceramic splat to the steel substrate , 2011 .

[141]  El-Sayed M. Sherif,et al.  Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior , 2011 .

[142]  A. Keshri,et al.  Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: A comparison between experiments and simulation , 2011 .

[143]  N. Koratkar,et al.  Graphene–aluminum nanocomposites , 2011 .

[144]  K. Jagannadham Orientation dependence of thermal conductivity in copper-graphene composites , 2011 .

[145]  C. Ramírez,et al.  Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy , 2011 .

[146]  Moon Gyu Sung,et al.  Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene , 2011, Advanced materials.

[147]  C. Balázsi,et al.  Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites , 2011 .

[148]  G. Papatheodorou,et al.  CO2‐Laser‐Induced Growth of Epitaxial Graphene on 6H‐SiC(0001) , 2011, 1201.1034.

[149]  Qiyuan He,et al.  Graphene-based materials: synthesis, characterization, properties, and applications. , 2011, Small.

[150]  D. Yoon,et al.  Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. , 2011, Nano letters.

[151]  A. M. van der Zande,et al.  Softened elastic response and unzipping in chemical vapor deposition graphene membranes. , 2011, Nano letters.

[152]  G. Pastorin,et al.  Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. , 2011, ACS nano.

[153]  Erica L. Corral,et al.  Toughening in graphene ceramic composites. , 2011, ACS nano.

[154]  Sang Wook Lee,et al.  Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy , 2011, 1103.3337.

[155]  M. Chhowalla,et al.  A review of chemical vapour deposition of graphene on copper , 2011 .

[156]  F. Ding,et al.  Dynamic ripples in single layer graphene , 2011 .

[157]  A. Weibel,et al.  Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth , 2011 .

[158]  Jun Yan,et al.  Preparation of graphene nanosheet/alumina composites by spark plasma sintering , 2011 .

[159]  X. Jia,et al.  Graphene edges: a review of their fabrication and characterization. , 2011, Nanoscale.

[160]  Carl W. Magnuson,et al.  Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. , 2010, ACS nano.

[161]  F. Monteiro,et al.  Influence of crystallite size of nanophased hydroxyapatite on fibronectin and osteonectin adsorption and on MC3T3-E1 osteoblast adhesion and morphology. , 2010, Journal of colloid and interface science.

[162]  P. Iyer,et al.  Diameter dependence of oxidative stability in multiwalled carbon nanotubes: Role of defects and effect of vacuum annealing , 2010 .

[163]  Jeongho Park,et al.  Epitaxial Graphene Growth by Carbon Molecular Beam Epitaxy (CMBE) , 2010, Advanced materials.

[164]  C. Berger,et al.  Scalable templated growth of graphene nanoribbons on SiC. , 2010, Nature nanotechnology.

[165]  S. Ramaprabhu,et al.  Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide , 2010 .

[166]  E. Olevsky,et al.  Spark plasma sintering of tantalum carbide , 2010 .

[167]  Yunqi Liu,et al.  Controllable Synthesis of Graphene and Its Applications , 2010, Advanced materials.

[168]  J. Lehman,et al.  Quartz-crystal microbalance for in situ monitoring of laser cleaning of carbon nanotubes , 2010 .

[169]  Lianjun Wang,et al.  Preparation and electrical properties of graphene nanosheet/Al2O3 composites , 2010 .

[170]  Yuehe Lin,et al.  Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting , 2010 .

[171]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[172]  W. Choi,et al.  Synthesis of Graphene and Its Applications: A Review , 2010 .

[173]  A. Mahmood,et al.  Production, properties and potential of graphene , 2010, 1002.0370.

[174]  S. R. Bakshi,et al.  Carbon nanotube reinforced metal matrix composites - a review , 2010 .

[175]  B. Zeng,et al.  High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method , 2009 .

[176]  E. Conrad,et al.  Growth mechanism for epitaxial graphene on vicinal 6 H -SiC ( 0001 ) surfaces: A scanning tunneling microscopy study , 2009 .

[177]  Z. Chlup,et al.  Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure , 2009 .

[178]  Lianjun Wang,et al.  Preparation and Consolidation of Alumina/Graphene Composite Powders , 2009 .

[179]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[180]  P. Shipway,et al.  Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components , 2009 .

[181]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[182]  Hui-Ming Cheng,et al.  Synthesis of high-quality graphene with a pre-determined number of layers , 2009 .

[183]  K. Woo,et al.  Sintering behavior and mechanical properties of WC-10Co, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering , 2009 .

[184]  Wei Chen,et al.  Bottom-up growth of epitaxial graphene on 6H-SiC(0001). , 2008, ACS nano.

[185]  F. M. Peeters,et al.  Graphene: A perfect nanoballoon , 2008, 0810.4056.

[186]  E. Conrad,et al.  Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces , 2008, 0809.3619.

[187]  X. Jia,et al.  Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. , 2008, Nano letters.

[188]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[189]  A. Ragulya Consolidation of ceramic nanopowders , 2008 .

[190]  S. Chou,et al.  Graphene transistors fabricated via transfer-printing in device active-areas on large wafer , 2007 .

[191]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[192]  M I Katsnelson,et al.  Intrinsic ripples in graphene. , 2007, Nature materials.

[193]  Z. A. Munir,et al.  The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .

[194]  E. Lavernia,et al.  Synthesis and mechanical behavior of nanostructured materials via cryomilling , 2006 .

[195]  Suk‐Joong L. Kang,et al.  Sintering: Densification, Grain Growth and Microstructure , 2005 .

[196]  M. H. Bocanegra-Bernal,et al.  Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics , 2004 .

[197]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[198]  Arvind Agarwal,et al.  Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite , 2004 .

[199]  T. Webster,et al.  Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. , 2004, Journal of biomedical materials research. Part A.

[200]  Pierre Fauchais,et al.  Understanding plasma spraying , 2004 .

[201]  S. Seal,et al.  Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite , 2004 .

[202]  Xing‐dong Zhang,et al.  Dissolution and mineralization behaviors of HA coatings. , 2003, Biomaterials.

[203]  M. Mayo,et al.  Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content , 2002 .

[204]  Zhe Zhao,et al.  Spark Plasma Sintering of Alumina , 2002 .

[205]  Zhengming Sun,et al.  Ternary Compound Ti3SiC2: Part II. Deformation and Fracture Behavior at Different Temperatures , 2002 .

[206]  Yongjun Chen,et al.  Preparation and growth mechanism of TaCx whiskers , 2001 .

[207]  Pierre Fauchais,et al.  Quo vadis thermal spraying? , 2001, International Thermal Spray Conference.

[208]  Helen V. Atkinson,et al.  Fundamental aspects of hot isostatic pressing: An overview , 2000 .

[209]  R. Ritchie,et al.  Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2 , 2000 .

[210]  E. Lavernia,et al.  Grain growth of nanocrystalline Fe–Al alloys produced by cryomilling in liquid argon and nitrogen , 1998 .

[211]  Chun-Hway Hsueh,et al.  Debonding of interfaces between beta-silicon nitride whiskers and SiAlY oxynitride glasses , 1996 .

[212]  Young‐Wook Kim,et al.  Grain Growth and Fracture Toughness of Fine‐Grained Silicon Carbide Ceramics , 1995 .

[213]  M. Hoffmann,et al.  Relationship between Microstructure, Toughening Mechanisms, and Fracture Toughness of Reinforced Silicon Nitride Ceramics , 1995 .

[214]  A. Evans,et al.  Whisker Toughening: A Comparison Between Aluminum Oxide and Silicon Nitride Toughened with Silicon Carbide , 1990 .

[215]  M. J. Luton,et al.  Cryomilling of Nano-Phase Dispersion Strengthened Aluminum , 1988 .

[216]  R. Raj Analysis of the sintering pressure , 1987 .

[217]  F. London,et al.  The general theory of molecular forces , 1937 .