Normal Helly circular-arc graphs and its subclasses

A Helly circular-arc model M=(C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how these classes of graphs relate with straight and round digraphs.

[1]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[2]  Jayme Luiz Szwarcfiter,et al.  The clique operator on circular-arc graphs , 2010, Discret. Appl. Math..

[3]  Jeremy P. Spinrad,et al.  Polynomial time recognition of unit circular-arc graphs , 2006, J. Algorithms.

[4]  Alan Tucker,et al.  Structure theorems for some circular-arc graphs , 1974, Discret. Math..

[5]  Pavol Hell,et al.  Lexicographic orientation and representation algorithms for comparability graphs, proper circular arc graphs, and proper interval graphs , 1995, J. Graph Theory.

[6]  Pavol Hell,et al.  Interval bigraphs and circular arc graphs , 2004, J. Graph Theory.

[7]  Haim Kaplan,et al.  Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs , 2009, Discret. Appl. Math..

[8]  Jitender S. Deogun,et al.  Consecutive Retrieval Property-Revisited , 1999, Inf. Process. Lett..

[9]  Ross M. McConnell Linear-Time Recognition of Circular-Arc Graphs , 2003, Algorithmica.

[10]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[11]  Yahav Nussbaum,et al.  From a Circular-Arc Model to a Proper Circular-Arc Model , 2008, WG.

[12]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[13]  Jing Huang,et al.  On the Structure of Local Tournaments , 1995, J. Comb. Theory, Ser. B.

[14]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[15]  Min Chih Lin,et al.  Clique graphs of Helly circular arc graphs , 2001, Ars Comb..

[16]  Jayme Luiz Szwarcfiter,et al.  Unit Circular-Arc Graph Representations and Feasible Circulations , 2008, SIAM J. Discret. Math..

[17]  Bruce Hedman,et al.  Clique graphs of time graphs , 1984, J. Comb. Theory, Ser. B.

[18]  Haiko Müller,et al.  Recognizing Interval Digraphs and Interval Bigraphs in Polynomial Time , 1997, Discret. Appl. Math..

[19]  Pavol Hell,et al.  Tournament-like oriented graphs , 1992 .

[20]  Jayme Luiz Szwarcfiter,et al.  Characterizations and Linear Time Recognition of Helly Circular-Arc Graphs , 2006, COCOON.

[21]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[22]  Roded Sharan,et al.  A Fully Dynamic Algorithm for Recognizing and Representing Proper Interval Graphs , 1999, SIAM J. Comput..

[23]  L. Sunil Chandran,et al.  Boxicity of Circular Arc Graphs , 2011, Graphs Comb..

[24]  Wen-Lian Hsu,et al.  PC trees and circular-ones arrangements , 2003, Theor. Comput. Sci..

[25]  Jayme Luiz Szwarcfiter,et al.  A Simple Linear Time Algorithm for the Isomorphism Problem on Proper Circular-Arc Graphs , 2008, SWAT.

[26]  Jutta Mitas Minimal Representation of Semiorders with Intervals of Same Length , 1994, ORDAL.

[27]  Terry A. McKee,et al.  Restricted circular-arc graphs and clique cycles , 2003, Discret. Math..

[28]  A. Tucker,et al.  Coloring a Family of Circular Arcs , 1975 .

[29]  Frédéric Gardi,et al.  The Roberts characterization of proper and unit interval graphs , 2007, Discret. Math..

[30]  Jayme Luiz Szwarcfiter,et al.  Short Models for Unit Interval Graphs , 2009, Electron. Notes Discret. Math..

[31]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[32]  Ross McConnell Linear-Time Recognition of Circular-Arc Graphs ; CU-CS-914-01 , 2001 .

[33]  Jayme Luiz Szwarcfiter,et al.  Proper Helly Circular-Arc Graphs , 2007, WG.

[34]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[35]  Stephan Olariu,et al.  Greedy Recognition and Coloring Algorithms for indifference graphs , 1992, Computer Science and Operations Research.

[36]  Jayme Luiz Szwarcfiter,et al.  Characterizations and recognition of circular-arc graphs and subclasses: A survey , 2009, Discret. Math..

[37]  Dale Skrien,et al.  A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs , 1982, J. Graph Theory.

[38]  Haim Kaplan,et al.  A Simpler Linear-Time Recognition of Circular-Arc Graphs , 2006, SWAT.

[39]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[40]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[41]  Jayme Luiz Szwarcfiter,et al.  Linear-Time Recognition of Helly Circular-Arc Models and Graphs , 2011, Algorithmica.

[42]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[43]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[44]  Kurt Mehlhorn,et al.  Certifying algorithms for recognizing interval graphs and permutation graphs , 2003, SODA '03.

[45]  Jayme Luiz Szwarcfiter,et al.  On cliques of Helly Circular-arc Graphs , 2008, Electron. Notes Discret. Math..

[46]  Christophe Crespelle Fully Dynamic Representations of Interval Graphs , 2009, WG.

[47]  R. Gorenflo,et al.  Multi-index Mittag-Leffler Functions , 2014 .