He-accreting white dwarfs: accretion regimes and final outcomes

The behaviour of carbon-oxygen white dwarfs (WDs) subject to direct helium accretion is extensively studied. We aim to analyze the thermal response of the accreting WD to mass deposition at different time scales. The analysis has been performed for initial WDs masses and accretion rates in the range (0.60 - 1.02) Msun and 1.e-9 - 1.e-5 Msun/yr, respectively. Thermal regimes in the parameters space M_{WD} - dot{M}_{He}, leading to formation of red-giant-like structure, steady burning of He, mild, strong and dynamical flashes have been identified and the transition between those regimes has been studied in detail. In particular, the physical properties of WDs experiencing the He-flash accretion regime have been investigated in order to determine the mass retention efficiency as a function of the accretor total mass and accretion rate. We also discuss to what extent the building-up of a He-rich layer via H-burning could be described according to the behaviour of models accreting He-rich matter directly. Polynomial fits to the obtained results are provided for use in binary population synthesis computations. Several applications for close binary systems with He-rich donors and CO WD accretors are considered and the relevance of the results for the interpretation of He-novae is discussed.

[1]  L. Yungelson,et al.  Double-degenerate semidetached binaries with helium secondaries: cataclysmic variables, supersoft X-ray sources, supernovae and accretion-induced collapses , 1996 .

[2]  I. Hachisu,et al.  Mass Accumulation Efficiency in Helium Shell Flashes for Various White Dwarf Masses , 2004, astro-ph/0407632.

[3]  Stephan Rosswog,et al.  The viscous evolution of white dwarf merger remnants , 2012, 1207.0512.

[4]  S. Cristallo,et al.  s process in low-mass asymptotic giant branch stars , 2005, astro-ph/0501405.

[5]  David Branch,et al.  IN SEARCH OF THE PROGENITORS OF TYPE IA SUPERNOVAE , 1995 .

[6]  A. Tornambe',et al.  He stars and He-accreting CO white dwarfs , 1991 .

[7]  Jacobs University Bremen,et al.  SURFACE DETONATIONS IN DOUBLE DEGENERATE BINARY SYSTEMS TRIGGERED BY ACCRETION STREAM INSTABILITIES , 2009, 0911.0416.

[8]  R. Taam The long-term evolution of accreting carbon white dwarfs , 1980 .

[9]  T. R. Marsh,et al.  THE EXPANDING BIPOLAR SHELL OF THE HELIUM NOVA V445 PUPPIS , 2009, 0910.1069.

[10]  A. Tornambe',et al.  Hydrogen-Accreting Carbon-Oxygen White Dwarfs of Low Mass: Thermal and Chemical Behavior of Burning Shells , 2000, astro-ph/0003272.

[11]  S. Woosley,et al.  Models for Type I Supernova. I. Detonations in White Dwarfs , 1986 .

[12]  K. Nomoto Accreting white dwarf models for type 1 supernovae. II - Off-center detonation supernovae , 1982 .

[13]  J. Truran,et al.  HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E , 2010, 1009.3829.

[14]  L. Bildsten,et al.  LATERALLY PROPAGATING DETONATIONS IN THIN HELIUM LAYERS ON ACCRETING WHITE DWARFS , 2012, 1205.6517.

[15]  S. F. Portegies Zwart,et al.  Short-period AM CVn systems as optical, X-ray and gravitational-wave sources , 2004 .

[16]  D. Vanbeveren,et al.  The delay-time distribution of Type Ia supernovae: a comparison between theory and observation , 2010, 1003.2491.

[17]  K. Postnov,et al.  The Evolution of Compact Binary Star Systems , 2006, Living reviews in relativity.

[18]  L. Bildsten,et al.  UNSTABLE HELIUM SHELL BURNING ON ACCRETING WHITE DWARFS , 2009, 0903.0654.

[19]  K. Nomoto White dwarf models for type I supernovae and quiet supernovae, and presupernova evolution , 1980 .

[20]  G. Nelemans,et al.  Single degenerate supernova type Ia progenitors - Studying the influence of different mass retention efficiencies , 2013, 1302.2629.

[21]  A. Chieffi,et al.  Isochrones for hydrogen-burning globular cluster stars. I. The metallicity range (Fe/H) from -2 to -1 , 1989 .

[22]  G. Nelemans,et al.  Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars , 2001, astro-ph/0101123.

[23]  R. G. Izzard,et al.  Theoretical uncertainties of the Type Ia supernova rate , 2014, 1401.2895.

[24]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[25]  K. Nomoto,et al.  Inward Propagation of Nuclear-burning Shells in Merging C-O and He White Dwarfs , 1998, astro-ph/9801084.

[26]  L. Yungelson Evolution of low-mass helium stars in semidetached binaries , 2008, 0804.2780.

[27]  Mariko Kato,et al.  Optically thick winds and nova outbursts , 1994 .

[28]  L. Bildsten,et al.  THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES , 2013, 1308.4193.

[29]  D. Kasen,et al.  THERMONUCLEAR.Ia SUPERNOVAE FROM HELIUM SHELL DETONATIONS: EXPLOSION MODELS AND OBSERVABLES , 2010, 1002.2258.

[30]  N. Langer,et al.  The First binary star evolution model producing a Chandrasekhar mass white dwarf , 2003, astro-ph/0402286.

[31]  W. Hillebrandt,et al.  Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs , 2007, 0710.5486.

[32]  Stephan Rosswog,et al.  How the merger of two white dwarfs depends on their mass ratio: orbital stability and detonations at contact , 2012, 1201.2406.

[33]  P. Dragulin,et al.  Properties of SN Ia progenitors from light curves and spectra , 2013 .

[34]  I. Iben,et al.  Model stars with degenerate dwarf cores and helium-burning shells: a stationary-burning approximation , 1989 .

[35]  S. Justham,et al.  Producing Type Iax supernovae from a specific class of helium-ignited WD explosions , 2013, 1310.2297.

[36]  W. Hillebrandt,et al.  DETONATIONS IN SUB-CHANDRASEKHAR-MASS C+O WHITE DWARFS , 2010, 1003.2917.

[37]  W. Hillebrandt,et al.  2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs , 2011, 1111.2117.

[38]  L. Bildsten,et al.  THE IGNITION OF CARBON DETONATIONS VIA CONVERGING SHOCK WAVES IN WHITE DWARFS , 2013, 1305.6925.

[39]  A. Tornambe',et al.  Hydrogen-accreting Carbon-Oxygen White Dwarfs , 1998 .

[40]  Gabriel Rockefeller,et al.  REMNANTS OF BINARY WHITE DWARF MERGERS , 2011, 1112.1420.

[41]  S. Woosley,et al.  MULTI-DIMENSIONAL MODELS FOR DOUBLE DETONATION IN SUB-CHANDRASEKHAR MASS WHITE DWARFS , 2013, 1303.0324.

[42]  Eli Livne,et al.  Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae , 1990 .

[43]  M. Hashimoto,et al.  White dwarf models of supernovae and cataclysmic variables , 1987 .

[44]  G. Shaviv,et al.  The fate of a WD accreting H-rich material at high accretion rates , 2013 .

[45]  Izumi Hachisu,et al.  Stellar wind during helium nova outburst , 1989 .

[46]  J. Solheim AM CVn Stars: Status and Challenges , 2010 .

[47]  Jacobs University Bremen,et al.  The structure and fate of white dwarf merger remnants , 2013, 1308.1667.

[48]  Stuart A. Sim,et al.  Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼0.9M⊙ , 2010, Nature.

[49]  Volker Springel,et al.  HELIUM-IGNITED VIOLENT MERGERS AS A UNIFIED MODEL FOR NORMAL AND RAPIDLY DECLINING TYPE Ia SUPERNOVAE , 2013, 1302.2913.

[50]  X. Chen,et al.  The helium star donor channel for the progenitors of Type Ia supernovae , 2009 .

[51]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[52]  A. Tornambe',et al.  Carbon-Oxygen White Dwarfs Accreting CO-rich Matter. I. A Comparison between Rotating and Nonrotating Models , 2002, astro-ph/0210624.

[53]  W. Hillebrandt,et al.  On the brightness distribution of type Ia supernovae from violent white dwarf mergers , 2012, 1209.0645.

[54]  N. Ashok,et al.  The enigmatic outburst of V445 Puppis - A possible helium nova? , 2003, astro-ph/0307304.

[55]  A. V. Tutukov,et al.  On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses , 1985 .

[56]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[57]  A method to derive the absolute composition of the Sun, the solar system, and the stars , 2006, astro-ph/0611229.

[58]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[59]  O. University,et al.  Reconciling 56Ni production in Type Ia supernovae with double degenerate scenarios , 2013, 1308.0334.

[60]  Alexander V. Tutukov,et al.  On the Evolution of Symbiotic Stars and Other Binaries with Accreting Degenerate Dwarfs , 1996 .

[61]  G. Nelemans,et al.  Mass transfer between double white dwarfs , 2003, astro-ph/0312577.

[62]  P. Brown,et al.  THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek , 2013, 1306.2337.

[63]  R. Taam Helium runaways in white dwarfs , 1980 .

[64]  W. Hillebrandt,et al.  Violent mergers of nearly equal-mass white dwarf as progenitors of subluminous Type Ia supernovae , 2011, 1102.1354.

[65]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[66]  G. Nelemans,et al.  ACCEPTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 6/22/04 THE THERMAL STATE OF THE ACCRETING WHITE DWARF IN AM CANUM VENATICORUM BINARIES , 2005 .

[67]  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THERMALLY STABLE NUCLEAR BURNING ON ACCRETING WHITE DWARFS , 2007 .

[68]  S. E. Woosley,et al.  SUB-CHANDRASEKHAR MASS MODELS FOR SUPERNOVAE , 2010, 1010.5292.

[69]  I. Iben,et al.  Helium star cataclysmics , 1991 .

[70]  SN 2010LP—A TYPE IA SUPERNOVA FROM A VIOLENT MERGER OF TWO CARBON-OXYGEN WHITE DWARFS , 2013, 1311.0310.

[71]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[72]  J. Brooks,et al.  HYDROGEN BURNING ON ACCRETING WHITE DWARFS: STABILITY, RECURRENT NOVAE, AND THE POST-NOVA SUPERSOFT PHASE , 2013, 1309.3375.

[73]  T. Iijima,et al.  Spectroscopic observations of the first helium nova V445 Puppis , 2008 .

[74]  S. Cristallo,et al.  HEAVY ELEMENTS IN GLOBULAR CLUSTERS: THE ROLE OF ASYMPTOTIC GIANT BRANCH STARS , 2014, 1403.0819.

[75]  G. Nelemans,et al.  Two new AM Canum Venaticorum binaries from the Sloan Digital Sky Survey III , 2013, 1312.3335.

[76]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[77]  M. Kasliwal Systematically Bridging the Gap Between Novae and Supernovae , 2011, Publications of the Astronomical Society of Australia.

[78]  P. Moroni,et al.  Calibration of White Dwarf Cooling Sequences: Theoretical Uncertainty , 2002, astro-ph/0209045.

[79]  W. Hillebrandt,et al.  DOUBLE-DETONATION SUB-CHANDRASEKHAR SUPERNOVAE: SYNTHETIC OBSERVABLES FOR MINIMUM HELIUM SHELL MASS MODELS , 2010, 1006.4489.

[80]  W. Hillebrandt,et al.  Towards an understanding of Type Ia supernovae from a synthesis of theory and observations , 2013, 1302.6420.

[81]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[82]  W. Hillebrandt,et al.  NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES , 2012, 1201.5123.

[83]  Warren R. Brown,et al.  THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES , 2013, 1304.4248.

[84]  G. Nelemans,et al.  Supernova Type Ia progenitors from merging double white dwarfs - Using a new population synthesis model , 2012, 1208.6446.

[85]  Chris L. Fryer,et al.  RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE , 2009, 0904.3108.

[86]  A. Tornambe',et al.  The Influence of 14N(e–, ν)14C(α, γ)18O Reaction on He Ignition in Degenerate Physical Conditions , 2001, astro-ph/0105477.

[87]  D. Kasen,et al.  TYPE Ia SUPERNOVAE FROM MERGING WHITE DWARFS. I. PROMPT DETONATIONS , 2013, 1311.5008.

[88]  R. Taam,et al.  The thermal evolution of the donors in AM Canum Venaticorum binaries , 2007, 0708.0220.

[89]  E. Livne,et al.  Numerical simulations of off-center detonations in helium shells , 1991 .

[90]  W. Arnett,et al.  Explosions of Sub--Chandrasekhar Mass White Dwarfs in Two Dimensions , 1995 .

[91]  I. Iben Hot accreting white dwarfs in the quasi-static approximation , 1982 .

[92]  Chris L. Fryer,et al.  Delay times and rates for type Ia supernovae and thermonuclear explosions from double-detonation sub-Chandrasekhar mass models , 2010, 1011.1407.

[93]  W. Hillebrandt,et al.  Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? , 2010, 1002.2173.