Factor Fields: A Unified Framework for Neural Fields and Beyond

We present Factor Fields, a novel framework for modeling and representing signals. Factor Fields decomposes a signal into a product of factors, each represented by a classical or neural field representation which operates on transformed input coordinates. This decomposition results in a unified framework that accommodates several recent signal representations including NeRF, Plenoxels, EG3D, Instant-NGP, and TensoRF. Additionally, our framework allows for the creation of powerful new signal representations, such as the"Dictionary Field"(DiF) which is a second contribution of this paper. Our experiments show that DiF leads to improvements in approximation quality, compactness, and training time when compared to previous fast reconstruction methods. Experimentally, our representation achieves better image approximation quality on 2D image regression tasks, higher geometric quality when reconstructing 3D signed distance fields, and higher compactness for radiance field reconstruction tasks. Furthermore, DiF enables generalization to unseen images/3D scenes by sharing bases across signals during training which greatly benefits use cases such as image regression from sparse observations and few-shot radiance field reconstruction.

[1]  B. Recht,et al.  K-Planes: Explicit Radiance Fields in Space, Time, and Appearance , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Justin Johnson,et al.  HexPlane: A Fast Representation for Dynamic Scenes , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Ali Farhadi,et al.  Neural Radiance Field Codebooks , 2023, ICLR.

[4]  Daeyoung Kim,et al.  D-TensoRF: Tensorial Radiance Fields for Dynamic Scenes , 2022, ArXiv.

[5]  Derek Hoiem,et al.  QFF: Quantized Fourier Features for Neural Field Representations , 2022, ArXiv.

[6]  T. Funkhouser,et al.  OpenScene: 3D Scene Understanding with Open Vocabularies , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Hongwen Zhang,et al.  Tensor4D: Efficient Neural 4D Decomposition for High-Fidelity Dynamic Reconstruction and Rendering , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Andreas Geiger,et al.  NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed Neural Radiance Fields , 2022, IEEE Transactions on Visualization and Computer Graphics.

[9]  S. Fidler,et al.  GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images , 2022, NeurIPS.

[10]  S. Fidler,et al.  Variable Bitrate Neural Fields , 2022, SIGGRAPH.

[11]  Andreas Geiger,et al.  MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction , 2022, NeurIPS.

[12]  V. Sitzmann,et al.  Decomposing NeRF for Editing via Feature Field Distillation , 2022, NeurIPS.

[13]  Shenghua Gao,et al.  PREF: Phasorial Embedding Fields for Compact Neural Representations , 2022, ArXiv.

[14]  Vincent Vanhoucke,et al.  Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items , 2022, 2022 International Conference on Robotics and Automation (ICRA).

[15]  Huan Fu,et al.  Modeling Indirect Illumination for Inverse Rendering , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Torsten Sattler,et al.  ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers , 2022, ECCV.

[17]  Andreas Geiger,et al.  TensoRF: Tensorial Radiance Fields , 2022, ECCV.

[18]  U. Neumann,et al.  Point-NeRF: Point-based Neural Radiance Fields , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  T. Müller,et al.  Instant neural graphics primitives with a multiresolution hash encoding , 2022, ACM Trans. Graph..

[20]  Bohyung Han,et al.  InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Jeong Joon Park,et al.  StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Shalini De Mello,et al.  Efficient Geometry-aware 3D Generative Adversarial Networks , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Benjamin Recht,et al.  Plenoxels: Radiance Fields without Neural Networks , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Jonathan T. Barron,et al.  Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Jonathan T. Barron,et al.  RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Pratul P. Srinivasan,et al.  Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Hwann-Tzong Chen,et al.  Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Jonathan T. Barron,et al.  Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition , 2021, NeurIPS.

[29]  Christian Theobalt,et al.  StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis , 2021, ICLR.

[30]  J.-Y. Zhu,et al.  Advances in Neural Rendering , 2021, SIGGRAPH Courses.

[31]  Yaron Lipman,et al.  Volume Rendering of Neural Implicit Surfaces , 2021, NeurIPS.

[32]  C. Theobalt,et al.  NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction , 2021, NeurIPS.

[33]  Jingyi Yu,et al.  Editable free-viewpoint video using a layered neural representation , 2021, ACM Trans. Graph..

[34]  Ravi Ramamoorthi,et al.  NeuMIP , 2021, ACM Trans. Graph..

[35]  Noah Snavely,et al.  PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Hao Su,et al.  MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[37]  Xiaolong Wang,et al.  Learning Continuous Image Representation with Local Implicit Image Function , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Jonathan T. Barron,et al.  NeRD: Neural Reflectance Decomposition from Image Collections , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[39]  Angjoo Kanazawa,et al.  pixelNeRF: Neural Radiance Fields from One or Few Images , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Jiajun Wu,et al.  pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Francesc Moreno-Noguer,et al.  D-NeRF: Neural Radiance Fields for Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Zhengqi Li,et al.  Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Jonathan T. Barron,et al.  Nerfies: Deformable Neural Radiance Fields , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[44]  Yannick Hold-Geoffroy,et al.  Neural Reflectance Fields for Appearance Acquisition , 2020, ArXiv.

[45]  Kyaw Zaw Lin,et al.  Neural Sparse Voxel Fields , 2020, NeurIPS.

[46]  Yannick Hold-Geoffroy,et al.  Deep Reflectance Volumes: Relightable Reconstructions from Multi-View Photometric Images , 2020, ECCV.

[47]  Jingyi Yu,et al.  SofGAN: A Portrait Image Generator with Dynamic Styling , 2020, ACM Trans. Graph..

[48]  Andreas Geiger,et al.  GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis , 2020, NeurIPS.

[49]  Jonathan T. Barron,et al.  Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains , 2020, NeurIPS.

[50]  Gordon Wetzstein,et al.  Implicit Neural Representations with Periodic Activation Functions , 2020, NeurIPS.

[51]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[52]  Marc Pollefeys,et al.  Convolutional Occupancy Networks , 2020, ECCV.

[53]  Andreas Geiger,et al.  Differentiable Volumetric Rendering: Learning Implicit 3D Representations Without 3D Supervision , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  G. Rainer,et al.  Neural BTF Compression and Interpolation , 2019, Comput. Graph. Forum.

[55]  Justus Thies,et al.  Deferred neural rendering , 2019, ACM Trans. Graph..

[56]  Richard A. Newcombe,et al.  DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Sebastian Nowozin,et al.  Occupancy Networks: Learning 3D Reconstruction in Function Space , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Shenghua Gao,et al.  Deep Surface Light Fields , 2018, PACMCGIT.

[60]  John Flynn,et al.  Stereo magnification , 2018, ACM Trans. Graph..

[61]  Eirikur Agustsson,et al.  NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[62]  Gordon Wetzstein,et al.  Fast and flexible convolutional sparse coding , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[64]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[65]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[66]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Michael Goesele,et al.  Neural 3D Video Synthesis , 2021, ArXiv.

[68]  Junqiu Zhu Neural Complex Luminaires: Representation and Rendering , 2021 .

[69]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .