Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac).

The need to integrate massively increasing amounts of data on the mammalian brain has driven several ambitious neuroscientific database projects that were started during the last decade. Databasing the brain's anatomical connectivity as delivered by tracing studies is of particular importance as these data characterize fundamental structural constraints of the complex and poorly understood functional interactions between the components of real neural systems. Previous connectivity databases have been crucial for analysing anatomical brain circuitry in various species and have opened exciting new ways to interpret functional data, both from electrophysiological and from functional imaging studies. The eventual impact and success of connectivity databases, however, will require the resolution of several methodological problems that currently limit their use. These problems comprise four main points: (i) objective representation of coordinate-free, parcellation-based data, (ii) assessment of the reliability and precision of individual data, especially in the presence of contradictory reports, (iii) data mining and integration of large sets of partially redundant and contradictory data, and (iv) automatic and reproducible transformation of data between incongruent brain maps. Here, we present the specific implementation of the 'collation of connectivity data on the macaque brain' (CoCoMac) database (http://www.cocomac.org). The design of this database addresses the methodological challenges listed above, and focuses on experimental and computational neuroscientists' needs to flexibly analyse and process the large amount of published experimental data from tracing studies. In this article, we explain step-by-step the conceptual rationale and methodology of CoCoMac and demonstrate its practical use by an analysis of connectivity in the prefrontal cortex.

[1]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[2]  E. Crosby,et al.  Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man , 1941 .

[3]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[4]  J. Jimenez‐Castellanos The amygdaloid complex in monkey studied by reconstructional methods , 1949, The Journal of comparative neurology.

[5]  J. Guilford Psychometric methods, 2nd ed. , 1954 .

[6]  Mountcastle Vb,et al.  The cytoarchitecture of the postcentral gyrus of the monkey Macaca mulatta. , 1959 .

[7]  T P POWELL,et al.  The cytoarchitecture of the postcentral gyrus of the monkey Macaca mulatta. , 1959, Bulletin of the Johns Hopkins Hospital.

[8]  Stephen J. Garland,et al.  Algorithm 97: Shortest path , 1962, Commun. ACM.

[9]  E. F. Codd,et al.  A Relational Model for Large Shared Data Banks , 1970 .

[10]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[11]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[12]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[13]  E. F. Codd,et al.  A relational model of data for large shared data banks , 1970, CACM.

[14]  M Mishkin,et al.  Projections of the amygdala to the thalamus in the cynomolgus monkey , 1984, The Journal of comparative neurology.

[15]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[16]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[17]  S P Wise,et al.  The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[19]  D L Rosene,et al.  Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents , 1987, The Journal of comparative neurology.

[20]  D. Pandya,et al.  Cingulate cortex of the rhesus monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[21]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[22]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[23]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[24]  P. Goldman-Rakic,et al.  Interhemispheric integration: I. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. , 1991, Cerebral cortex.

[25]  P. Goldman-Rakic,et al.  Interhemispheric integration: II. Symmetry and convergence of the corticostriatal projections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) of the rhesus monkey. , 1991, Cerebral cortex.

[26]  P S Goldman-Rakic,et al.  Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[27]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[28]  Ralf Hartmut Güting Datenstrukturen und Algorithmen , 1992, Leitfäden und Monographien der Informatik.

[29]  P. Goldman-Rakic,et al.  Prefrontal connections of medial motor areas in the rhesus monkey , 1993, The Journal of comparative neurology.

[30]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[32]  M. Petrides Comparative architectonic analysis of the human and the macaque frontal cortex , 1994 .

[33]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[34]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[35]  M P Young,et al.  Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[38]  J. Bortz,et al.  Forschungsmethoden und Evaluation , 1995 .

[39]  C. Blakemore,et al.  Visual motion processing in the anterior ectosylvian sulcus of the cat. , 1996, Journal of neurophysiology.

[40]  M P Young,et al.  Indeterminate Organization of the Visual System , 1996, Science.

[41]  S. Carmichael,et al.  Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. , 1996, The Journal of comparative neurology.

[42]  Karl Zilles,et al.  The Developing European Computerized Human Brain Database for All Imaging Modalities , 1996, NeuroImage.

[43]  J. Scannell Determining cortical landscapes , 1997, Nature.

[44]  M. Gahr How should brain nuclei be delineated? Consequences for developmental mechanisms and for correlations ofarea size, neuron numbers and functions of brain nuclei , 1997, Trends in Neurosciences.

[45]  B. Payne,et al.  Thalamic and cortical projections to middle suprasylvian cortex of cats: constancy and variation , 1997, Experimental Brain Research.

[46]  Jennifer Widom,et al.  A First Course in Database Systems , 1997 .

[47]  T Schormann,et al.  Three‐Dimensional linear and nonlinear transformations: An integration of light microscopical and MRI data , 1998, Human brain mapping.

[48]  B Jouve,et al.  A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. , 1998, Cerebral cortex.

[49]  Klaas E. Stephan,et al.  A Formal Approach to the Translation of Cortical Maps , 1998 .

[50]  Afonso C. Silva,et al.  In vivo neuronal tract tracing using manganese‐enhanced magnetic resonance imaging , 1998, Magnetic resonance in medicine.

[51]  Lotfi B. Merabet,et al.  Motion integration in a thalamic visual nucleus , 1998, Nature.

[52]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[53]  Klaus Obermayer,et al.  A Stochastic Self-Organizing Map for Proximity Data , 1999, Neural Computation.

[54]  R. Kotter Trends in European Computational Neuroscience , 1999 .

[55]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[56]  Klaas E. Stephan,et al.  One cortex - many maps: An introduction to coordinate-independent mapping by Objective Relational Transformation (ORT) , 1999, Neurocomputing.

[57]  R Kötter,et al.  Trends in European computational neuroscience. , 1999, Reviews in the neurosciences.

[58]  Gully A. P. C. Burns,et al.  Neuroscholar 1.00, a neuroinformatics databasing website , 1999, Neurocomputing.

[59]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[61]  M P Young,et al.  Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  Area interrelations in primate prefrontal cortex , 2000, NeuroImage.

[63]  Stephen M. Maurer,et al.  Science's neglected legacy , 2000, Nature.

[64]  M P Young,et al.  On imputing function to structure from the behavioural effects of brain lesions. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  K Zilles,et al.  Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  M. Young,et al.  Computational analysis of functional connectivity between areas of primate cerebral cortex. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[67]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[68]  J. Lanciego,et al.  Current concepts in neuroanatomical tracing , 2000, Progress in Neurobiology.

[69]  C. Poupon,et al.  Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles , 2000, NeuroImage.

[70]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[71]  F. Sommer,et al.  Global Relationship between Anatomical Connectivity and Activity Propagation in the Cerebral Cortex , 2022 .

[72]  M P Young,et al.  Brain structure-function relationships: advances from neuroinformatics. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  M P Young,et al.  Analysis of the connectional organization of neural systems associated with the hippocampus in rats. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[74]  Klaas E. Stephan,et al.  Organization of primate amygdalo-prefrontal projections , 2001, Neurocomputing.

[75]  Klaas E. Stephan,et al.  Connectional characteristics of areas in Walker's map of primate prefrontal cortex , 2001, Neurocomputing.

[76]  Bertram Ludäscher,et al.  Towards a federated neuroscientific knowledge management system using brain atlases , 2001, Neurocomputing.

[77]  Gully A. P. C. Burns,et al.  Knowledge Mechanics and the Neuroscholar Project: A New Approach to Neuroscientific Theory , 2001 .

[78]  K. E. Stephan,et al.  Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data , 2001, Anatomy and Embryology.

[79]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.