B-splines and pseudo-inversion as tools for handling saturation constraints in the optimal set-point regulation

This paper deals with the optimal output transition problem under saturation constraints on the control effort. The recently proposed pseudo inversion approach is here adopted to define a feedforward action optimizing the set-point following response of a given stable closed-loop system Σf,c. To take into account saturating actuators, the optimal external input reference r(t) forcing Σf,c is assumed to be given by a B-spline function. The actual control input u(t) yielded by r(t) and forcing the plant is optimally approximated by a B-spline û(t), whose control points û(t) are chosen in such a way to satisfy the saturation constraints on u(t). If û(t) is a sufficiently accurate approximation of u(t), the exact fulfillment of saturation constraints by û(t) are transferred to u(t). The simulations on a practical case show excellent results.

[1]  Lorenz T. Biegler,et al.  Constraint handing and stability properties of model‐predictive control , 1994 .

[2]  C. Desoer,et al.  Linear Time-Invariant Robust Servomechanism Problem: A Self-Contained Exposition , 1980 .

[3]  Emanuele Garone,et al.  Improved Feed-Forward Command Governor Strategies for Constrained Discrete-Time Linear Systems , 2014, IEEE Transactions on Automatic Control.

[4]  Stefano Di Cairano,et al.  Reference and command governors: A tutorial on their theory and automotive applications , 2014, 2014 American Control Conference.

[5]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[6]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[7]  Santosh Devasia,et al.  Optimal output-transitions for linear systems , 2003, Autom..

[8]  Arthur Richards,et al.  Fast model predictive control with soft constraints , 2013, 2013 European Control Conference (ECC).

[9]  Thomas F. Coleman,et al.  A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..

[10]  Valentina Orsini,et al.  Almost perfect tracking through mixed numerical-analytical stable pseudo-inversion of non minimum phase plants , 2013, 52nd IEEE Conference on Decision and Control.

[11]  Valentina Orsini,et al.  Output-transition optimization through a multi-objective least square procedure , 2014, 53rd IEEE Conference on Decision and Control.

[12]  K. T. Tan,et al.  Discrete‐time reference governors and the nonlinear control of systems with state and control constraints , 1995 .

[13]  Valentina Orsini,et al.  Accurate output tracking for nonminimum phase nonhyperbolic and near nonhyperbolic systems , 2014, Eur. J. Control.

[14]  Emanuele Garone,et al.  Explicit Reference Governor for Constrained Nonlinear Systems , 2016, IEEE Transactions on Automatic Control.

[15]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[16]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[17]  Qingze Zou Optimal preview-based stable-inversion for output tracking of nonminimum-phase linear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[18]  Valentina Orsini,et al.  Optimal transient performance under output set‐point reset , 2016 .

[19]  Aurelio Piazzi,et al.  Robust set-point constrained regulation via dynamic inversion† , 2001 .

[20]  Ofelia Begovich,et al.  PREDICTIVE CONTROL WITH CONSTRAINTS OF A MULTI-POOL IRRIGATION CANAL PROTOTYPE , 2007 .

[22]  B. Paden,et al.  Nonlinear inversion-based output tracking , 1996, IEEE Trans. Autom. Control..

[23]  Luca Consolini,et al.  Generalized bang-bang control for feedforward constrained regulation , 2006, CDC.

[24]  Aurelio Piazzi,et al.  Optimal noncausal set-point regulation of scalar systems , 2001, Autom..

[25]  Domenico Prattichizzo,et al.  Convolution profiles for right inversion of multivariable non-minimum phase discrete-time systems , 2002, Autom..

[26]  Valentina Orsini,et al.  A mixed numerical–analytical stable pseudo‐inversion method aimed at attaining an almost exact tracking , 2015 .

[27]  L. Hunt,et al.  Noncausal inverses for linear systems , 1996, IEEE Trans. Autom. Control..

[28]  Qingze Zou,et al.  Preview-Based Stable-Inversion for Output Tracking of Linear Systems , 1999 .

[29]  Alberto Bemporad,et al.  Fulfilling Hard Constraints in Uncertain Linear Systems by Reference Managing , 1998, Autom..

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Kenichi Tamura,et al.  Auto-Tuning Method of Expanded PID Control for MIMO Systems , 2006, 2006 SICE-ICASE International Joint Conference.

[32]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[33]  Aurelio Piazzi,et al.  Using stable input-output inversion for minimum-time feedforward constrained regulation of scalar systems , 2005, Autom..