The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma

We elucidate the close connection between the repulsive lattice gas in equilibrium statistical mechanics and the Lovász local lemma in probabilistic combinatorics. We show that the conclusion of the Lovász local lemma holds for dependency graph G and probabilities {px} if and only if the independent-set polynomial for G is nonvanishing in the polydisc of radii {px}. Furthermore, we show that the usual proof of the Lovász local lemma – which provides a sufficient condition for this to occur – corresponds to a simple inductive argument for the nonvanishing of the independent-set polynomial in a polydisc, which was discovered implicitly by Shearer(98) and explicitly by Dobrushin.(37,38) We also present some refinements and extensions of both arguments, including a generalization of the Lovász local lemma that allows for ‘‘soft’’ dependencies. In addition, we prove some general properties of the partition function of a repulsive lattice gas, most of which are consequences of the alternating-sign property for the Mayer coefficients. We conclude with a brief discussion of the repulsive lattice gas on countably infinite graphs.

[1]  R. Tennant Algebra , 1941, Nature.

[2]  J. Groeneveld,et al.  Two theorems on classical many-particle systems , 1962 .

[3]  Oliver Penrose,et al.  Convergence of Fugacity Expansions for Fluids and Lattice Gases , 1963 .

[4]  G. W. Ford,et al.  THE THEORY OF LINEAR GRAPHS WITH APPLICATIONS TO THE THEORY OF THE VIRIAL DEVELOPMENT OF THE PROPERTIES OF GASES , 1964 .

[5]  B. Levin,et al.  Distribution of zeros of entire functions , 1964 .

[6]  V. S. Vladimirov,et al.  Methods of the theory of functions of many complex variables Cambridge , 2007 .

[7]  L. K. Runnels Phase Transition of a Bethe Lattice Gas of Hard Molecules , 1967 .

[8]  R. Dobrushin The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .

[9]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[10]  Alan Feldstein,et al.  THE PHRAGMÉN-LINDELÖF PRINCIPLE AND A CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONS , 1972 .

[11]  Ole J. Heilmann,et al.  Phase transition of hard hexagons on a triangular lattice , 1973 .

[12]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[13]  P. Montel,et al.  Lecons sur les familles normales de fonctions analytiques et leurs applications , 1974 .

[14]  Phase transition in a lattice gas with third nearest neighbour exclusion on a square lattice , 1974 .

[15]  A. Reddy,et al.  On the distribution of zeros of entire functions , 1974 .

[16]  Ole J. Heilmann,et al.  The use of reflection as symmetry operation in connection with Peierls' argument , 1974 .

[17]  Joel H. Spencer,et al.  Ramsey's Theorem - A New Lower Bound , 1975, J. Comb. Theory, Ser. A.

[18]  L. K. Runnels Phase transitions of hard sphere lattice gases , 1975 .

[19]  D. Ruelle Probability estimates for continuous spin systems , 1976 .

[20]  J. Lebowitz,et al.  Statistical mechanics of systems of unbounded spins , 1976 .

[21]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[22]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .

[25]  R. Israel Convexity in the Theory of Lattice Gases , 1979 .

[26]  H. Künsch Almost sure entropy and the variational principle for random fields with unbounded state space , 1981 .

[27]  R. Baxter,et al.  Rogers-Ramanujan identities in the hard hexagon model , 1981 .

[28]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[29]  Erhard Seiler,et al.  Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics , 1982 .

[30]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[31]  R. Høegh-Krohn,et al.  Compactness and the maximal Gibbs state for random Gibbs fields on a lattice , 1982 .

[32]  Camillo Cammarota,et al.  Decay of correlations for infinite range interactions in unbounded spin systems , 1982 .

[33]  米谷 民明,et al.  J. Glimm and A. Jaffe: Quantum Physics; A Functional Integral Point of View, Springer-Verlag, New York and Heidelberg, 1981, xx+418ページ, 24.5×16.5cm, DM62. , 1983 .

[34]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[35]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[36]  L. Lovász Matching Theory (North-Holland mathematics studies) , 1986 .

[37]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[38]  David Preiss,et al.  Cluster expansion for abstract polymer models , 1986 .

[39]  Anthony J. Guttmann,et al.  COMMENT: Comment on 'The exact location of partition function zeros, a new method for statistical mechanics' , 1987 .

[40]  T. Kennedy,et al.  Mayer expansions and the Hamilton-Jacobi equation , 1987 .

[41]  David C. Brydges,et al.  Mayer expansions and the Hamilton-Jacobi equation. II. Fermions, dimensional reduction formulas , 1988 .

[42]  Stephen Suen,et al.  A correlation inequality and a Poisson limit theorem for nonoverlapping balanced subgraphs of a random graph , 1990, Random Struct. Algorithms.

[43]  Yahya Ould Hamidoune On the numbers of independent k-sets in a claw free graph , 1990, J. Comb. Theory, Ser. B.

[44]  David C. Fisher,et al.  Dependence polynomials , 1990, Discret. Math..

[45]  Noga Alon,et al.  A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.

[46]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[47]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[48]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[49]  Anders Björner,et al.  Matroid Applications: Homology and Shellability of Matroids and Geometric Lattices , 1992 .

[50]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[51]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[52]  A. Sokal,et al.  Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory , 1991, hep-lat/9210032.

[53]  Arieh Iserles,et al.  On the generalized pantograph functional-differential equation , 1993, European Journal of Applied Mathematics.

[54]  Xueliang Li,et al.  Clique polynomials and independent set polynomials of graphs , 1994, Discret. Math..

[55]  J. Berg,et al.  Percolation and the hard-core lattice gas model , 1994 .

[56]  G. Ziegler Lectures on Polytopes , 1994 .

[57]  A. Markushevich Analytic Function Theory , 1996 .

[58]  R. L. Dobrushin,et al.  Topics in Statistical and Theoretical Physics , 1996 .

[59]  R. L. Dobrushin,et al.  Perturbation methods of the theory of Gibbsian fields , 1996 .

[60]  Ira M. Gessel,et al.  The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions , 1996, Electron. J. Comb..

[61]  R. L. Dobrushin,et al.  Estimates of semiinvariants for the Ising model at low temperatures , 1996 .

[62]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[63]  J. Steif,et al.  Amenability and Phase Transition in the Ising Model , 1997 .

[64]  Olle Häggström Ergodicity of the hard-core model onZ2 with parity-dependent activities , 1997 .

[65]  Svante Janson,et al.  New versions of Suen's correlation inequality , 1998, Random Struct. Algorithms.

[66]  Aldo Procacci,et al.  A Remark on High Temperature Polymer Expansion for Lattice Systems with Infinite Range Pair Interactions , 1998 .

[67]  R. Range Holomorphic Functions and Integral Representations in Several Complex Variables , 1998 .

[68]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[69]  S. Todo Transfer-Matrix Study Of Negative-Fugacity Singularity Of Hard-Core Lattice Gas , 1999 .

[70]  J. Bobenrieth,et al.  The rational maps \mapsto1+1/^{} have no Herman rings , 1999 .

[71]  Erratum: Mayer Expansions and the Hamiltonian–Jacobi Equation. II. Fermions, Dimensional Reduction Formulas , 1999 .

[72]  Olle Häggström,et al.  Nonmonotonic Behavior in Hard-Core and Widom–Rowlinson Models , 1999 .

[73]  Aldo Procacci,et al.  Polymer Gas Approach to N-Body Lattice Systems , 1999 .

[74]  David C. Brydges,et al.  Coulomb Systems at Low Density: A Review , 1999 .

[75]  John W. Milnor On Rational Maps with Two Critical Points , 2000, Exp. Math..

[76]  Anton Bovier,et al.  A Simple Inductive Approach to the Problem of Convergence of Cluster Expansions of Polymer Models , 2000 .

[77]  Henk W. J. Blöte,et al.  High-dimensional lattice gases , 2000 .

[78]  Salvador Miracle-Sole,et al.  On the convergence of cluster expansions , 2000, 1206.4242.

[79]  Alan D. Sokal A Personal List of Unsolved Problems Concerning Lattice Gases and Antiferromagnetic Potts Models , 2000 .

[80]  Jason I. Brown,et al.  Roots of Independence Polynomials of Well Covered Graphs , 2000 .

[81]  Jeff Kahn,et al.  An Entropy Approach to the Hard-Core Model on Bipartite Graphs , 2001, Combinatorics, Probability and Computing.

[82]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[83]  J. Kahn Entropy, independent sets and antichains: A new approach to Dedekind's problem , 2001 .

[84]  Alan D. Sokal,et al.  Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions , 1999, Combinatorics, Probability and Computing.

[85]  N. Levenberg,et al.  Function theory in several complex variables , 2001 .

[86]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[87]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[88]  Jason I. Brown,et al.  Bounding the Roots of Independence Polynomials , 2001, Ars Comb..

[89]  Marc Noy,et al.  Irreducibility of the Tutte Polynomial of a Connected Matroid , 2001, J. Comb. Theory, Ser. B.

[90]  Aldo Procacci,et al.  Potts Model on Infinite Graphs and the Limit of Chromatic Polynomials , 2002 .

[91]  Wenan Guo,et al.  Finite-size analysis of the hard-square lattice gas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  David G. C. Horrocks,et al.  The Numbers of Dependent k-Sets in a Graph Are Log Concave , 2002, J. Comb. Theory, Ser. B.

[93]  PARABOLIC PERTURBATION IN THE FAMILY z 7! 1 + 1=wz d , 2002 .

[94]  PARABOLIC PERTURBATION IN THE FAMILY , 2002 .

[95]  Vadim E. Levit,et al.  A Family of Well-Covered Graphs with Unimodal Independence Polynomials , 2003 .

[96]  Alan D. Sokal,et al.  Chromatic Roots are Dense in the Whole Complex Plane , 2000, Combinatorics, Probability and Computing.

[97]  Jeff Kahn,et al.  On Phase Transition in the Hard-Core Model on ${\mathbb Z}^d$ , 2004, Combinatorics, Probability and Computing.

[98]  David G. Wagner,et al.  Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..

[99]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[100]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[101]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .