ALMA uncovers the [C ii] emission and warm dust continuum in a z = 8.31 Lyman break galaxy

We report on the detection of the [C ii] 157.7 μm emission from the Lyman break galaxy (LBG) MACS0416_Y1 at z = 8.3113, by using the Atacama Large Millimeter/submillimeter Array (ALMA). The luminosity ratio of [O iii] 88 μm (from previous campaigns) to [C ii] is 9.3 ± 2.6, indicative of hard interstellar radiation fields and/or a low covering fraction of photodissociation regions. The emission of [C ii] is cospatial to the 850 μm dust emission (90 μm rest frame, from previous campaigns), however the peak [C ii] emission does not agree with the peak [O iii] emission, suggesting that the lines originate from different conditions in the interstellar medium. We fail to detect continuum emission at 1.5 mm (160 μm rest frame) down to 18 μJy (3σ). This non-detection places a strong limits on the dust spectrum, considering the 137 ± 26 μJy continuum emission at 850 μm. This suggests an unusually warm dust component (T > 80 K, 90 per cent confidence limit), and/or a steep dust-emissivity index (βdust > 2), compared to galaxy-wide dust emission found at lower redshifts (typically T ∼ 30–50 K, βdust ∼ 1–2). If such temperatures are common, this would reduce the required dust mass and relax the dust production problem at the highest redshifts. We therefore warn against the use of only single-wavelength information to derive physical properties, recommend a more thorough examination of dust temperatures in the early Universe, and stress the need for instrumentation that probes the peak of warm dust in the Epoch of Reionization.

[1]  J. Silverman,et al.  Balmer Break Galaxy Candidates at z ∼ 6: A Potential View on the Star Formation Activity at z ≳ 14 , 2019, The Astrophysical Journal.

[2]  T. Nagao,et al.  Large Population of ALMA Galaxies at z > 6 with Very High [O iii] 88 μm to [C ii] 158 μm Flux Ratios: Evidence of Extremely High Ionization Parameter or PDR Deficit? , 2019, The Astrophysical Journal.

[3]  O. Fèvre,et al.  The ALPINE-ALMA [C II] survey: Star-formation-driven outflows and circumgalactic enrichment in the early Universe , 2019, Astronomy & Astrophysics.

[4]  D. Burgarella,et al.  Origins Space Telescope Mission Concept Study Report , 2019, 1912.06213.

[5]  M. Kohandel,et al.  A physical model for [C ii] line emission from galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  K. Mawatari,et al.  The absence of [C ii] 158 $\mu$m emission in spectroscopically confirmed galaxies at z > 8 , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[7]  M. Kohandel,et al.  Kinematics of z ≥ 6 galaxies from [C ii] line emission , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  M. Kohandel,et al.  Deep into the structure of the first galaxies: SERRA views , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  N. Abel,et al.  The Herschel Dwarf Galaxy Survey , 2019, Astronomy & Astrophysics.

[10]  M. Michałowski,et al.  Dust production scenarios in galaxies at z ∼6–8.3 , 2019, Astronomy & Astrophysics.

[11]  V. Bromm,et al.  Redshift Horizon for Detecting the First Galaxies in Far-infrared Surveys , 2019, The Astrophysical Journal.

[12]  R. Ivison,et al.  First Identification of 10 kpc [C ii] 158 μm Halos around Star-forming Galaxies at z = 5–7 , 2019, The Astrophysical Journal.

[13]  G. Lagache,et al.  G.A.S. , 2019, Astronomy & Astrophysics.

[14]  R. Ellis,et al.  Probing cosmic dawn with emission lines: predicting infrared and nebular line emission for ALMA and JWST , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  F. Mannucci,et al.  De re metallica: the cosmic chemical evolution of galaxies , 2018, The Astronomy and Astrophysics Review.

[16]  S. Khochfar,et al.  Radiative properties of the first galaxies: rapid transition between UV and infrared bright phases , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  P. Dayal Early galaxy formation and its large-scale effects , 2018, Proceedings of the International Astronomical Union.

[18]  N. Yoshida,et al.  Detection of the Far-infrared [O iii] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era , 2018, The Astrophysical Journal.

[19]  R. Pelló,et al.  The onset of star formation 250 million years after the Big Bang , 2018, Nature.

[20]  H. Rix,et al.  No Evidence for Enhanced [O iii] 88 μm Emission in a z ∼ 6 Quasar Compared to Its Companion Starbursting Galaxy , 2018, The Astrophysical Journal.

[21]  G. Rieke,et al.  The Far-infrared Emission of the First Massive Galaxies , 2018, The Astrophysical Journal.

[22]  T. Nagao,et al.  A high dust emissivity index β for a CO-faint galaxy in a filamentary Lyα nebula at z = 3.1 , 2018, Publications of the Astronomical Society of Japan.

[23]  Ronald Hesper,et al.  ALMA Band 5 receiver cartridge: Design, performance, and commissioning , 2018 .

[24]  A. Pallottini,et al.  Dusty galaxies in the Epoch of Reionization: simulations , 2018, 1802.07772.

[25]  S. Viti,et al.  The evolution of grain mantles and silicate dust growth at high redshift , 2018, 1802.01142.

[26]  J. Bernard-Salas,et al.  HERUS: The far-IR/submm spectral energy distributions of local ULIRGs and photometric atlas , 2017, 1712.04843.

[27]  Florida,et al.  Galaxy growth in a massive halo in the first billion years of cosmic history , 2017, Nature.

[28]  B. Mobasher,et al.  On the nature and physical conditions of the luminous Ly α emitter CR7 and its rest-frame UV components , 2017, Monthly Notices of the Royal Astronomical Society.

[29]  R. Bouwens,et al.  Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8 , 2017, Nature.

[30]  A. Fontana,et al.  Kiloparsec-scale gaseous clumps and star formation at $z=5-7$ , 2017, 1712.03985.

[31]  G. Lagache,et al.  The [CII] 158 micron line emission in high-redshift galaxies , 2017, 1711.00798.

[32]  R. Bouwens,et al.  The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.

[33]  B. Mobasher,et al.  ALMA Reveals Metals yet No Dust within Multiple Components in CR7 , 2017, 1709.06569.

[34]  D. Riechers,et al.  Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties , 2017, 1708.07842.

[35]  R. Maiolino,et al.  The impact of chemistry on the structure of high-z galaxies , 2017, 1707.04259.

[36]  D. Riechers,et al.  Dust Properties of C ii Detected z ∼ 5.5 Galaxies: New HST/WFC3 Near-IR Observations , 2017, 1707.02980.

[37]  J. Wagg,et al.  Galaxy Formation through Filamentary Accretion at z = 6.1 , 2017, 1706.09968.

[38]  A. Evans,et al.  A Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies , 2017, 1705.04326.

[39]  Masayuki Tanaka,et al.  SILVERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7 , 2017, 1705.00733.

[40]  J. Dunlop,et al.  No evidence for Population III stars or a direct collapse black hole in the z = 6.6 Lyman α emitter ‘CR7’ , 2017 .

[41]  R. Ellis,et al.  Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy , 2017, 1703.02039.

[42]  A. Fontana,et al.  Extended ionised and clumpy gas in a normal galaxy at z=7.1 revealed by ALMA , 2017, 1701.03468.

[43]  A. Fontana,et al.  ALMA [C ii] 158 μm Detection of a Redshift 7 Lensed Galaxy behind RX J1347.1−1145 , 2016, 1610.02099.

[44]  R. Maiolino,et al.  Zooming on the internal structure of z ≃ 6 galaxies , 2016, 1609.01719.

[45]  R. Bouwens,et al.  The ALMA Frontier Fields Survey. I. 1.1 mm continuum detections in Abell 2744, MACS J0416.1-2403 and MACS J1149.5+2223 , 2016, 1607.03808.

[46]  M. Ouchi,et al.  The infrared-dark dust content of high redshift galaxies , 2016, 1607.01824.

[47]  A. Pallottini,et al.  Molecular cloud photoevaporation and far-infrared line emission , 2016, 1606.08464.

[48]  J. Anderson,et al.  The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.

[49]  S. Viti,et al.  The problematic growth of dust in high-redshift galaxies , 2016, 1606.07214.

[50]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: THE INFRARED EXCESS OF UV-SELECTED z = 2–10 GALAXIES AS A FUNCTION OF UV-CONTINUUM SLOPE AND STELLAR MASS , 2016, 1606.05280.

[51]  N. Yoshida,et al.  Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch , 2016, Science.

[52]  V. A. Bruce,et al.  A deep ALMA image of the Hubble Ultra Deep Field , 2016, 1606.00227.

[53]  B. Hilbert,et al.  The Frontier Fields: Survey Design , 2016 .

[54]  Jia-Sheng Huang,et al.  Possible identification of massive and evolved galaxies At z > 5 , 2016, 1603.08394.

[55]  V. A. Bruce,et al.  The ASTRODEEP Frontier Fields catalogues - II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416 , 2016, 1603.02461.

[56]  J. Kneib,et al.  [C II] emission in z ~ 6 strongly lensed, star-forming galaxies , 2016, 1603.02277.

[57]  R. Bouwens,et al.  A REMARKABLY LUMINOUS GALAXY AT Z = 11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2016, 1603.00461.

[58]  I. P'erez-Fournon,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. III. MACS J0717.5+3745 , 2016, 1602.02775.

[59]  M. Oguri,et al.  PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.

[60]  O. Ilbert,et al.  ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.

[61]  J. Diego,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. II. MACS J0416–2403 , 2015, 1510.07084.

[62]  O. Ilbert,et al.  Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission , 2015, Nature.

[63]  Ran Wang,et al.  STAR FORMATION AND THE INTERSTELLAR MEDIUM IN z>6 UV-LUMINOUS LYMAN-BREAK GALAXIES , 2015, 1504.05875.

[64]  B. Mobasher,et al.  EVIDENCE FOR PopIII-LIKE STELLAR POPULATIONS IN THE MOST LUMINOUS Lyα EMITTERS AT THE EPOCH OF REIONIZATION: SPECTROSCOPIC CONFIRMATION , 2015, 1504.01734.

[65]  M. Michałowski Dust production 680-850 million years after the Big Bang , 2015, 1503.08210.

[66]  O. Ilbert,et al.  The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.

[67]  A dusty, normal galaxy in the epoch of reionization , 2015, Nature.

[68]  V. Doublier,et al.  The Herschel Dwarf Galaxy Survey - I. Properties of the low-metallicity ISM from PACS spectroscopy , 2015, 1502.03131.

[69]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[70]  J. Carlstrom,et al.  The nature of the [C II] emission in dusty star-forming galaxies from the SPT survey , 2015, 1501.06909.

[71]  J. Dunlop,et al.  New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density , 2014, 1412.1472.

[72]  I. P'erez-Fournon,et al.  Frontier Fields: Combining HST, VLT, and Spitzer data to explore the z ~ 8 Universe behind the lensing cluster MACSJ0416.1−2403 , 2014, 1412.1089.

[73]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[74]  S. Finkelstein,et al.  New constraints on dust emission and UV attenuation of z=6.5-7.5 galaxies from millimeter observations , 2014, 1407.5793.

[75]  D. Malesani,et al.  Rapid formation of large dust grains in the luminous supernova 2010jl , 2014, Nature.

[76]  Linhua Jiang,et al.  ALMA OBSERVATION OF 158 μm [C ii] LINE AND DUST CONTINUUM OF A Z = 7 NORMALLY STAR-FORMING GALAXY IN THE EPOCH OF REIONIZATION , 2014, 1405.5387.

[77]  K. Nomoto,et al.  DUST PRODUCTION FACTORIES IN THE EARLY UNIVERSE: FORMATION OF CARBON GRAINS IN RED-SUPERGIANT WINDS OF VERY MASSIVE POPULATION III STARS , 2014, 1404.5391.

[78]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[79]  E. Pellegrini,et al.  The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types , 2014, 1402.4075.

[80]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[81]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[82]  P. P. van der Werf,et al.  SHOCK-ENHANCED C+ EMISSION AND THE DETECTION OF H2O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL , 2013, 1309.1525.

[83]  Arizona State University,et al.  EXPLAINING THE [C ii]157.7 μm DEFICIT IN LUMINOUS INFRARED GALAXIES—FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE , 2013, 1307.2635.

[84]  J. Wagg,et al.  A SEARCH FOR C ii 158 μm LINE EMISSION IN HCM 6A, A Lyα EMITTER AT z = 6.56 , 2013, 1305.6469.

[85]  H. Roussel,et al.  An Overview of the Dwarf Galaxy Survey , 2013, 1305.2628.

[86]  B. Groves,et al.  ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS , 2013, The Astrophysical Journal.

[87]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[88]  Akio K. Inoue,et al.  Dust formation history of galaxies: A critical role of metallicity* for the dust mass growth by accreting materials in the interstellar medium , 2012, Earth, Planets and Space.

[89]  F. Boulanger,et al.  SHOCK-ENHANCED C + EMISSION AND THE DETECTION OF H2O FROM STEPHAN QUINTET'S GROUP-WIDE SHOCK USING HERSCHEL , 2013 .

[90]  Marcin Sawicki,et al.  SEDfit: Software for Spectral Energy Distribution Fitting of Photometric Data , 2012, 1210.0285.

[91]  D. Thilker,et al.  THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). II. DUST AND GAS IN ANDROMEDA , 2012, 1204.0785.

[92]  D. Elbaz,et al.  GOODS-HERSCHEL: GAS-TO-DUST MASS RATIOS AND CO-TO-H2 CONVERSION FACTORS IN NORMAL AND STARBURSTING GALAXIES AT HIGH-z , 2011, 1109.1140.

[93]  G. J. Stacey,et al.  THz Low Resolution Spectroscopy for Astronomy , 2011, IEEE Transactions on Terahertz Science and Technology.

[94]  A. Cimatti,et al.  Dynamical properties of AMAZE and LSD galaxies from gas kinematics and the Tully-Fisher relation at z~3 , 2010, 1007.4180.

[95]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[96]  L. Kewley,et al.  GOALS: The Great Observatories All-Sky LIRG Survey , 2009, 0904.4498.

[97]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[98]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[99]  R. Meijerink,et al.  Diagnostics of irradiated dense gas in galaxy nuclei. II. A grid of XDR and PDR models , 2006, astro-ph/0610360.

[100]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[101]  P. Solomon,et al.  Molecular Gas at High Redshift , 2005, astro-ph/0508481.

[102]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[103]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[104]  Loretta Dunne,et al.  The SCUBA Local Universe Galaxy Survey – II. 450‐μm data: evidence for cold dust in bright IRAS galaxies , 2001, astro-ph/0106362.

[105]  Michael W. Werner,et al.  Infrared Space Observatory Measurements of [C II] Line Variations in Galaxies , 1997 .

[106]  Gordon J. Stacey,et al.  [C II] 158 Micron Observations of IC 10: Evidence for Hidden Molecular Hydrogen in Irregular Galaxies , 1997 .

[107]  Max Tegmark,et al.  How Small Were the First Cosmological Objects? , 1996, astro-ph/9603007.

[108]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[109]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[110]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .