Parameter-less Hierarchical Bayesian Optimization Algorithm
暂无分享,去创建一个
[1] Martin Pelikan,et al. Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications (Studies in Computational Intelligence) , 2006 .
[2] Martin Pelikan,et al. Searching for Ground States of Ising Spin Glasses with Hierarchical BOA and Cluster Exact Approximation , 2006, Scalable Optimization via Probabilistic Modeling.
[3] F. Guerra,et al. Spin Glasses , 2005, cond-mat/0507581.
[4] Kalyanmoy Deb,et al. Sufficient conditions for deceptive and easy binary functions , 1994, Annals of Mathematics and Artificial Intelligence.
[5] Cláudio F. Lima,et al. Parameter-Less Optimization with the Extended Compact Genetic Algorithm and Iterated Local Search , 2004, GECCO.
[6] Martin Pelikan,et al. Parameter-Less Hierarchical BOA , 2004, GECCO.
[7] Martin Pelikan,et al. Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).
[8] David E. Goldberg,et al. Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.
[9] David E. Goldberg,et al. A hierarchy machine: Learning to optimize from nature and humans , 2003, Complex..
[10] David E. Goldberg,et al. Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..
[11] A. Middleton,et al. Three-dimensional random-field Ising magnet: Interfaces, scaling, and the nature of states , 2001, cond-mat/0107489.
[12] David E. Goldberg,et al. Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .
[13] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[14] D. Goldberg,et al. Escaping hierarchical traps with competent genetic algorithms , 2001 .
[15] Martin Pelikan,et al. Parameter-less Genetic Algorithm: A Worst-case Time and Space Complexity Analysis , 2000, GECCO.
[16] Fernando G. Lobo,et al. A Survey of Optimization by Building and Using Probabilistic Models , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[17] P. Bosman,et al. Continuous iterated density estimation evolutionary algorithms within the IDEA framework , 2000 .
[18] Fernando G. Lobo,et al. A parameter-less genetic algorithm , 1999, GECCO.
[19] D. Goldberg,et al. Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[20] David E. Goldberg,et al. The compact genetic algorithm , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[21] David Maxwell Chickering,et al. A Bayesian Approach to Learning Bayesian Networks with Local Structure , 1997, UAI.
[22] H. Mühlenbein,et al. From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.
[23] Georges R. Harik,et al. Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.
[24] Dirk Thierens,et al. Convergence Models of Genetic Algorithm Selection Schemes , 1994, PPSN.
[25] Heinz Mühlenbein,et al. Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.
[26] Kalyanmoy Deb,et al. Analyzing Deception in Trap Functions , 1992, FOGA.
[27] Heinz Mühlenbein,et al. How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.
[28] M. Mézard,et al. Spin Glass Theory and Beyond , 1987 .
[29] David H. Ackley,et al. An empirical study of bit vector function optimization , 1987 .
[30] K. Binder,et al. Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .