The young star cluster population of M51 with LEGUS - II. Testing environmental dependences

It has recently been established that the properties of young star clusters (YSCs) can vary as a function of the galactic environment in which they are found. We use the cluster catalogue produced by the Legacy Extragalactic UV Survey (LEGUS) collaboration to investigate cluster properties in the spiral galaxy M51. We analyse the cluster population as a function of galactocentric distance and in arm and inter-arm regions. The cluster mass function exhibits a similar shape at all radial bins, described by a power law with a slope close to −2 and an exponential truncation around 105 M⊙. While the mass functions of the YSCs in the spiral arm and inter-arm regions have similar truncation masses, the inter-arm region mass function has a significantly steeper slope than the one in the arm region; a trend that is also observed in the giant molecular cloud mass function and predicted by simulations. The age distribution of clusters is dependent on the region considered, and is consistent with rapid disruption only in dense regions, while little disruption is observed at large galactocentric distances and in the inter-arm region. The fraction of stars forming in clusters does not show radial variations, despite the drop in the H2 surface density measured as function of galactocentric distance. We suggest that the higher disruption rate observed in the inner part of the galaxy is likely at the origin of the observed flat cluster formation efficiency radial profile.

[1]  T. Wiklind,et al.  On the Spatially Resolved Star Formation History in M51. I. Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars , 2017, 1710.09401.

[2]  D. Calzetti,et al.  The young star cluster population of M51 with LEGUS – I. A comprehensive study of cluster formation and evolution , 2017, 1709.06101.

[3]  J. Kruijssen,et al.  A tight relation between the age distributions of stellar clusters and the properties of the interstellar medium in the host galaxy , 2017, 1705.10803.

[4]  D. Calzetti,et al.  Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters , 2017, 1705.06281.

[5]  University of Pisa,et al.  Exploring the IMF of star clusters: a joint SLUG and LEGUS effort , 2017, 1705.02980.

[6]  Linda J. Smith,et al.  Effective Radii of Young, Massive Star Clusters in Two LEGUS Galaxies , 2017, 1705.02692.

[7]  J. Prieto,et al.  Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628 , 2017, 1705.01588.

[8]  Linda J. Smith,et al.  The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies , 2017, 1704.06321.

[9]  E. Tasker,et al.  Star formation and ISM morphology in tidally induced spiral structures , 2017, 1704.04127.

[10]  J. Kruijssen,et al.  A unified model for the maximum mass scales of molecular clouds, stellar clusters and high-redshift clumps , 2017, 1704.00732.

[11]  T. A. Bell,et al.  Panchromatic Hubble Andromeda Treasury. XVIII. The High-mass Truncation of the Star Cluster Mass Function , 2017, 1703.10312.

[12]  Heidelberg,et al.  The varying mass distribution of molecular clouds across M83 , 2017, 1702.07728.

[13]  Linda J. Smith,et al.  Hierarchical star formation across the grand-design spiral NGC 1566 , 2017, 1702.06006.

[14]  C. Kramer,et al.  The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation , 2017, 1701.02184.

[15]  D. Calzetti,et al.  The properties, origin and evolution of stellar clusters in galaxy simulations and observations , 2016, 1609.00209.

[16]  A. Seth,et al.  PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS , 2016, 1606.05349.

[17]  B. Whitmore,et al.  THE AGE, MASS, AND SIZE DISTRIBUTIONS OF STAR CLUSTERS IN M51 , 2016 .

[18]  D. O. Astronomy,et al.  Properties of the cluster population of NGC 1566 and their implications , 2016, 1605.03451.

[19]  N. Bastian,et al.  The Lifecycle of Clusters in Galaxies , 2015, 1511.08212.

[20]  Linda J. Smith,et al.  THE SPATIAL DISTRIBUTION OF THE YOUNG STELLAR CLUSTERS IN THE STAR-FORMING GALAXY NGC 628 , 2015, 1511.02233.

[21]  C. Kramer,et al.  Gravitational torques imply molecular gas inflow towards the nucleus of M 51 , 2015, 1510.03440.

[22]  Linda J. Smith,et al.  THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253 , 2015, 1508.04476.

[23]  Linda J. Smith,et al.  Hierarchical star formation across the ring galaxy NGC 6503 , 2015, 1506.03928.

[24]  Linda J. Smith,et al.  Sizes and shapes of young star cluster light profiles in M83 , 2015, 1506.02042.

[25]  N. Bastian,et al.  Probing the role of the galactic environment in the formation of stellar clusters, using M83 as a test bench , 2015, 1505.07475.

[26]  Caltech,et al.  LEGACY EXTRAGALACTIC UV SURVEY (LEGUS) WITH THE HUBBLE SPACE TELESCOPE. I. SURVEY DESCRIPTION , 2014, 1410.7456.

[27]  J. Kruijssen,et al.  Globular cluster formation in the context of galaxy formation and evolution , 2014, 1407.2953.

[28]  Linda J. Smith,et al.  HIERARCHICAL STAR FORMATION IN NEARBY LEGUS GALAXIES , 2014, 1404.6001.

[29]  N. Bastian,et al.  The age distribution of stellar clusters in M83 , 2014, 1402.3595.

[30]  C. Kramer,et al.  THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS): ENVIRONMENTAL DEPENDENCE OF GIANT MOLECULAR CLOUD PROPERTIES IN M51 , 2014, 1401.1505.

[31]  C. Jog Jeans instability criterion modified by external tidal field , 2013, 1306.4425.

[32]  C. Kramer,et al.  GAS KINEMATICS ON GIANT MOLECULAR CLOUD SCALES IN M51 WITH PAWS: CLOUD STABILIZATION THROUGH DYNAMICAL PRESSURE , 2013, 1304.7910.

[33]  A. Bolatto,et al.  CLUMPING AND THE INTERPRETATION OF kpc-SCALE MAPS OF THE INTERSTELLAR MEDIUM: SMOOTH H i AND CLUMPY, VARIABLE H2 SURFACE DENSITY , 2013, 1304.1586.

[34]  C. Kramer,et al.  THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS). I. A CLOUD-SCALE/MULTI-WAVELENGTH VIEW OF THE INTERSTELLAR MEDIUM IN A GRAND-DESIGN SPIRAL GALAXY , 2013, 1304.1801.

[35]  C. Kramer,et al.  PROBABILITY DISTRIBUTION FUNCTIONS OF 12CO(J = 1 → 0) BRIGHTNESS AND INTEGRATED INTENSITY IN M51: THE PAWS VIEW , 2013, 1304.1219.

[36]  C. Kramer,et al.  THE PLATEAU DE BURE + 30 m ARCSECOND WHIRLPOOL SURVEY REVEALS A THICK DISK OF DIFFUSE MOLECULAR GAS IN THE M51 GALAXY , 2013, 1304.1396.

[37]  J. Pringle,et al.  The exciting lives of giant molecular clouds , 2013, 1303.4995.

[38]  J. Kruijssen,et al.  On the fraction of star formation occurring in bound stellar clusters , 2012, 1208.2963.

[39]  M. Sauvage,et al.  SPATIALLY RESOLVED STELLAR, DUST, AND GAS PROPERTIES OF THE POST-INTERACTING WHIRLPOOL GALAXY SYSTEM , 2012, 1206.2989.

[40]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[41]  M. Gieles,et al.  Stellar clusters in M83: formation, evolution, disruption and the influence of the environment , 2011, 1109.6015.

[42]  Benjamin D. Johnson,et al.  DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. II. COMBINATIONS OF ULTRAVIOLET AND INFRARED TRACERS , 2011, 1108.2837.

[43]  D. Schaerer,et al.  THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. I. JAMES WEBB SPACE TELESCOPE DETECTION LIMITS AND COLOR CRITERIA FOR POPULATION III GALAXIES , 2011, 1105.0921.

[44]  F. I. Pelupessy,et al.  Modelling the formation and evolution of star cluster populations in galaxy simulations , 2011, 1102.1013.

[45]  D. Calzetti,et al.  NEW CONSTRAINTS ON MASS-DEPENDENT DISRUPTION OF STAR CLUSTERS IN M51 , 2011, 1101.2869.

[46]  D. Hunter,et al.  ON THE DISRUPTION OF STAR CLUSTERS IN A HIERARCHICAL INTERSTELLAR MEDIUM , 2010, 1002.2823.

[47]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[48]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[49]  J. Pringle,et al.  Simulations of the grand design galaxy M51: a case study for analysing tidally induced spiral structure , 2009, 0912.1201.

[50]  Robert C. Kennicutt,et al.  DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF Hα AND INFRARED TRACERS , 2009, 0908.0203.

[51]  M. Gieles,et al.  The early evolution of the star cluster mass function , 2009, 0901.0830.

[52]  N. Bastian,et al.  Evolution of stellar structure in the Small Magellanic Cloud , 2008, 0809.2295.

[53]  U. London,et al.  The spatial evolution of stellar structures in the LMC/SMC , 2008, Proceedings of the International Astronomical Union.

[54]  R. Scheepmaker,et al.  ACS imaging of star clusters in M 51 : II. The luminosity function and mass function across the disk , 2008, 0806.3752.

[55]  H. Lamers The Baltimore and Utrecht models for cluster dissolution , 2008, 0804.2148.

[56]  B. Elmegreen Variations in Stellar Clustering with Environment: Dispersed Star Formation and the Origin of Faint Fuzzies , 2007, 0710.5788.

[57]  S. M. Fall,et al.  Star Cluster Demographics. I. A General Framework and Application to the Antennae Galaxies , 2006, astro-ph/0611055.

[58]  C. Kramer,et al.  A complete 12CO 2-1 map of M51 with HERA: I. Radial averages of CO, HI, and radio continuum , 2006, astro-ph/0609670.

[59]  N. Bastian,et al.  The luminosity function of young star clusters: implications for the maximum mass and luminosity of clusters. , 2005, astro-ph/0512297.

[60]  E. Rosolowsky,et al.  The Mass Spectra of Giant Molecular Clouds in the Local Group , 2005, astro-ph/0508679.

[61]  N. Bastian,et al.  An analytical description of the disruption of star clusters in tidal fields with an application to Galactic open clusters , 2005, astro-ph/0505558.

[62]  L. Úbeda,et al.  Numerical biases on IMF determinations created by binning , 2005, astro-ph/0505012.

[63]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[64]  H. Salo,et al.  N-body model for M51 — I. Multiple encounter versus single passage? , 2000 .

[65]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[66]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[67]  S. M. Fall,et al.  The Luminosity Function of Young Star Clusters in “the Antennae” Galaxies (NGC 4038/4039) , 1999, astro-ph/9907430.

[68]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[69]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[70]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[71]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[72]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[73]  M. Livio,et al.  Planets to cosmology : essential science in the final years of the Hubble Space Telescope : proceedings of the Space Telescope Science Institute Symposium, held in Baltimore, Maryland, May 3-6, 2004 , 2006 .

[74]  B. Whitmore A decade of Hubble Space Telescope science: The formation of star clusters , 2003 .

[75]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .