Stenotrophomonas, Achromobacter, and Nonmelioid Burkholderia Species: Antimicrobial Resistance and Therapeutic Strategies

Abstract Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nonmelioid Burkholderia species, namely, Burkholderia cepacia complex, collectively are a group of troublesome nonfermenters. Although not inherently virulent organisms, these environmental Gram negatives can complicate treatment in those who are immunocompromised, critically ill in the intensive care unit and those patients with suppurative lung disease, such as cystic fibrosis. Through a range of intrinsic antimicrobial resistance mechanisms, virulence factors, and the ability to survive in biofilms, these opportunistic pathogens are well suited to persist, both in the environment and the host. Treatment recommendations are hindered by the difficulties in laboratory identification, the lack of reproducibility of antimicrobial susceptibility testing, the lack of clinical breakpoints, and the absence of clinical outcome data. Despite trimethoprim–sulfamethoxazole often being the mainstay of treatment, resistance is widely encountered, and alternative regimens, including combination therapy, are often used. This review will highlight the important aspects and unique challenges that these three nonfermenters pose, and, in the absence of clinical outcome data, our therapeutic recommendations will be based on reported antimicrobial susceptibility and pharmacokinetic/pharmacodynamic profiles.

[1]  Glen R. Brown Cotrimoxazole - optimal dosing in the critically ill , 2014, Annals of Intensive Care.

[2]  Roopali Sharma,et al.  The role of tigecycline in the treatment of infections in light of the new black box warning , 2014, Expert review of anti-infective therapy.

[3]  S. Schippa,et al.  Outbreak of Achromobacter xylosoxidans in an Italian Cystic fibrosis center: genome variability, biofilm production, antibiotic resistance, and motility in isolated strains , 2014, Front. Microbiol..

[4]  M. Skov,et al.  Early treatment with inhaled antibiotics postpones next occurrence of Achromobacter in cystic fibrosis. , 2013, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[5]  J. Papadopoulos,et al.  Monotherapy with Fluoroquinolone or Trimethoprim-Sulfamethoxazole for Treatment of Stenotrophomonas maltophilia Infections , 2013, Antimicrobial Agents and Chemotherapy.

[6]  K. Peck,et al.  Can Levofloxacin Be a Useful Alternative to Trimethoprim-Sulfamethoxazole for Treating Stenotrophomonas maltophilia Bacteremia? , 2013, Antimicrobial Agents and Chemotherapy.

[7]  C. Neuwirth,et al.  Detection of Achromobacter xylosoxidans in Hospital, Domestic, and Outdoor Environmental Samples and Comparison with Human Clinical Isolates , 2013, Applied and Environmental Microbiology.

[8]  S. Sørensen,et al.  Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes , 2013, PloS one.

[9]  Amit Arora,et al.  Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology , 2013, Clinical Microbiology Reviews.

[10]  Brian M. Owens Silver makes antibiotics thousands of times more effective , 2013, Nature.

[11]  B. Duffy,et al.  The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria , 2013, PloS one.

[12]  J. Rolain,et al.  Evaluation of colistin susceptibility in multidrug-resistant clinical isolates from cystic fibrosis, France , 2013, European Journal of Clinical Microbiology & Infectious Diseases.

[13]  R. Bonomo,et al.  Insights into β-Lactamases from Burkholderia Species, Two Phylogenetically Related yet Distinct Resistance Determinants* , 2013, The Journal of Biological Chemistry.

[14]  P. Vandamme,et al.  Identification and distribution of Achromobacter species in cystic fibrosis. , 2013, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[15]  N. Høiby,et al.  Respiratory bacterial infections in cystic fibrosis , 2013, Current opinion in pulmonary medicine.

[16]  J. Otero,et al.  Molecular Characterization of Achromobacter Isolates from Cystic Fibrosis and Non-Cystic Fibrosis Patients in Madrid, Spain , 2013, Journal of Clinical Microbiology.

[17]  G. Peirano,et al.  Antimicrobial susceptibility and combination testing of invasive Stenotrophomonas maltophilia isolates , 2013, Scandinavian journal of infectious diseases.

[18]  H. Nelis,et al.  Biofilm-Grown Burkholderia cepacia Complex Cells Survive Antibiotic Treatment by Avoiding Production of Reactive Oxygen Species , 2013, PloS one.

[19]  J. Estapé Molecular typing in bacterial infections. , 2013 .

[20]  N. Ketheesan,et al.  Bacteraemias in tropical Australia: changing trends over a 10-year period. , 2013, Diagnostic microbiology and infectious disease.

[21]  A. Fanton,et al.  Epidemiology and resistance of Achromobacter xylosoxidans from cystic fibrosis patients in Dijon, Burgundy: first French data. , 2013, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[22]  V. Raia,et al.  Rapid identification of Burkholderia cepacia complex species recovered from cystic fibrosis patients using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. , 2013, Journal of microbiological methods.

[23]  A P MacGowan,et al.  EUCAST expert rules in antimicrobial susceptibility testing. , 2013, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[24]  Y. Yau,et al.  Biofilm Compared to Conventional Antimicrobial Susceptibility of Stenotrophomonas maltophilia Isolates from Cystic Fibrosis Patients , 2013, Antimicrobial Agents and Chemotherapy.

[25]  C. Neuwirth,et al.  Innate Aminoglycoside Resistance of Achromobacter xylosoxidans Is Due to AxyXY-OprZ, an RND-Type Multidrug Efflux Pump , 2012, Antimicrobial Agents and Chemotherapy.

[26]  M. Gonullu,et al.  Clinical and microbiological evaluation of eight patients with isolated Achromobacter xylosoxidans , 2012, Scandinavian journal of infectious diseases.

[27]  S. Ichiyama,et al.  Molecular characterization of IMP-type metallo-β-lactamases among multidrug-resistant Achromobacter xylosoxidans. , 2012, The Journal of antimicrobial chemotherapy.

[28]  M. Almuzara,et al.  Achromobacter xylosoxidans: An Emerging Pathogen Carrying Different Elements Involved in Horizontal Genetic Transfer , 2012, Current Microbiology.

[29]  H. Jacquier,et al.  In vitro antimicrobial activity of "last-resort" antibiotics against unusual nonfermenting Gram-negative bacilli clinical isolates. , 2012, Microbial drug resistance.

[30]  Mikala Wang,et al.  Multilocus Sequence Analysis of Isolates of Achromobacter from Patients with Cystic Fibrosis Reveals Infecting Species Other than Achromobacter xylosoxidans , 2012, Journal of Clinical Microbiology.

[31]  J. Odom,et al.  Bacterial biofilm diversity in contact lens-related disease: emerging role of Achromobacter, Stenotrophomonas, and Delftia. , 2012, Investigative ophthalmology & visual science.

[32]  I. Gould,et al.  Combination Antimicrobial Susceptibility Testing of Multidrug-Resistant Stenotrophomonas maltophilia from Cystic Fibrosis Patients , 2012, Antimicrobial Agents and Chemotherapy.

[33]  S. Richter,et al.  Evaluation of the Bruker Biotyper and Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Systems for Identification of Nonfermenting Gram-Negative Bacilli Isolated from Cultures from Cystic Fibrosis Patients , 2012, Journal of Clinical Microbiology.

[34]  E. Moore,et al.  Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. , 2012, FEMS microbiology letters.

[35]  S. McColley,et al.  Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with pseudomonas airway infection. , 2012, American journal of respiratory and critical care medicine.

[36]  J. Brooke Stenotrophomonas maltophilia: an Emerging Global Opportunistic Pathogen , 2012, Clinical Microbiology Reviews.

[37]  R. Kessler,et al.  Should cystic fibrosis patients infected with Burkholderia cepacia complex be listed for lung transplantation? , 2011, Interactive cardiovascular and thoracic surgery.

[38]  R. Albano,et al.  Achromobacter xylosoxidans: Characterization of Strains in Brazilian Cystic Fibrosis Patients , 2011, Journal of Clinical Microbiology.

[39]  C. Llanes,et al.  First Description of an RND-Type Multidrug Efflux Pump in Achromobacter xylosoxidans, AxyABM , 2011, Antimicrobial Agents and Chemotherapy.

[40]  J. Turton,et al.  Identification of Achromobacter xylosoxidans by detection of the bla(OXA-114-like) gene intrinsic in this species. , 2011, Diagnostic microbiology and infectious disease.

[41]  Chia-Jui Yang,et al.  Clinical characteristics and outcomes of patients with Burkholderia cepacia bacteremia in an intensive care unit. , 2011, Diagnostic microbiology and infectious disease.

[42]  S. Cooreman,et al.  Comment on: Newer antibacterial agents and their potential role in cystic fibrosis pulmonary exacerbation management. , 2011, The Journal of antimicrobial chemotherapy.

[43]  J. Turnidge,et al.  Stenotrophomonas maltophilia: emerging disease patterns and challenges for treatment , 2011, Expert review of anti-infective therapy.

[44]  P. Dawyndt,et al.  Classification and identification of the Burkholderia cepacia complex: Past, present and future. , 2011, Systematic and applied microbiology.

[45]  V. Raia,et al.  Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[46]  Microbiologie Burkholderia cepacia Complex , 2010 .

[47]  J. Elborn,et al.  Newer antibacterial agents and their potential role in cystic fibrosis pulmonary exacerbation management. , 2010, The Journal of antimicrobial chemotherapy.

[48]  Safdar Ali,et al.  Soil beneficial bacteria and their role in plant growth promotion: a review , 2010, Annals of Microbiology.

[49]  S. Sousa,et al.  Burkholderia cepacia Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants , 2010, International journal of microbiology.

[50]  R. Rajendran,et al.  Efflux pumps may play a role in tigecycline resistance in Burkholderia species. , 2010, International journal of antimicrobial agents.

[51]  P. Dřevínek,et al.  Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[52]  S. Gillespie,et al.  Approaches to measure the fitness of Burkholderia cepacia complex isolates. , 2010, Journal of medical microbiology.

[53]  Ronald N. Jones,et al.  Antimicrobial Susceptibilities of a Worldwide Collection of Stenotrophomonas maltophilia Isolates Tested against Tigecycline and Agents Commonly Used for S. maltophilia Infections , 2010, Antimicrobial Agents and Chemotherapy.

[54]  Heather K. Allen,et al.  Call of the wild: antibiotic resistance genes in natural environments , 2010, Nature Reviews Microbiology.

[55]  J. Lynch,et al.  Burkholderia cepacia Complex: Impact on the Cystic Fibrosis Lung Lesion , 2009, Seminars in respiratory and critical care medicine.

[56]  A. Cheng,et al.  Dosing Regimens of Cotrimoxazole (Trimethoprim-Sulfamethoxazole) for Melioidosis , 2009, Antimicrobial Agents and Chemotherapy.

[57]  J. M. Dow,et al.  The versatility and adaptation of bacteria from the genus Stenotrophomonas , 2009, Nature Reviews Microbiology.

[58]  S. Shelburne,et al.  Inhaled therapeutics for prevention and treatment of pneumonia , 2009, Expert opinion on drug safety.

[59]  M. Barchitta,et al.  Acquisition and spread of Acinetobacter baumannii and Stenotrophomonas maltophilia in intensive care patients. , 2009, International journal of hygiene and environmental health.

[60]  M. Falagas,et al.  Therapeutic options for Burkholderia cepacia infections beyond co-trimoxazole: a systematic review of the clinical evidence. , 2009, International journal of antimicrobial agents.

[61]  D. C. Griffith,et al.  Aerosol antibiotics: considerations in pharmacological and clinical evaluation. , 2008, Current opinion in biotechnology.

[62]  M. Falagas,et al.  Therapeutic options for Stenotrophomonas maltophilia infections beyond co-trimoxazole: a systematic review. , 2008, The Journal of antimicrobial chemotherapy.

[63]  Eduardo P C Rocha,et al.  The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients , 2008, Journal of bacteriology.

[64]  P. Dawyndt,et al.  Matrix-assisted laser desorption ionisation-time-of of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. , 2008, Journal of microbiological methods.

[65]  P. Berche,et al.  Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nonfermenting Gram-Negative Bacilli Isolated from Cystic Fibrosis Patients , 2008, Journal of Clinical Microbiology.

[66]  M. Hodson,et al.  Trends in pathogens colonising the respiratory tract of adult patients with cystic fibrosis, 1985-2005. , 2008, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[67]  C. Woods,et al.  Survival after lung transplantation of cystic fibrosis patients infected with Burkholderia cepacia complex. , 2008, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[68]  J. M. Dow,et al.  Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa , 2008, Molecular microbiology.

[69]  S. Bell,et al.  Burkholderia cepacia complex epidemiology in persons with cystic fibrosis from Australia and New Zealand. , 2008, Research in microbiology.

[70]  G. Valenza,et al.  Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. , 2008, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[71]  S. Gillespie,et al.  Fluoroquinolone-Resistant Mutants of Burkholderia cepacia , 2007, Antimicrobial Agents and Chemotherapy.

[72]  K. Rolston,et al.  Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[73]  L. Saiman,et al.  Antimicrobial Susceptibility and Synergy Studies of Burkholderia cepacia Complex Isolated from Patients with Cystic Fibrosis , 2006, Antimicrobial Agents and Chemotherapy.

[74]  R. Zbinden,et al.  16S rRNA Gene Sequencing versus the API 20 NE System and the VITEK 2 ID-GNB Card for Identification of Nonfermenting Gram-Negative Bacteria in the Clinical Laboratory , 2006, Journal of Clinical Microbiology.

[75]  Chun-Eng Liu,et al.  Alcaligenes xylosoxidans bacteremia: clinical features and microbiological characteristics of isolates. , 2005, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[76]  D. Kontoyiannis,et al.  Nonfermentative gram-negative bacilli in cancer patients: increasing frequency of infection and antimicrobial susceptibility of clinical isolates to fluoroquinolones. , 2005, Diagnostic microbiology and infectious disease.

[77]  Joanna B. Goldberg,et al.  The multifarious, multireplicon Burkholderia cepacia complex , 2005, Nature Reviews Microbiology.

[78]  Ronald N. Jones,et al.  Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. , 2005, International journal of antimicrobial agents.

[79]  J. Heesemann,et al.  Pitfalls of polymyxin antimicrobial susceptibility testing of Pseudomonas aeruginosa isolated from cystic fibrosis patients. , 2004, The Journal of antimicrobial chemotherapy.

[80]  P. Vandamme,et al.  Epidemiology and Clinical Course of Burkholderia cepacia Complex Infections, Particularly Those Caused by Different Burkholderia cenocepacia Strains, among Patients Attending an Italian Cystic Fibrosis Center , 2004, Journal of Clinical Microbiology.

[81]  G. Di Bonaventura,et al.  Biofilm Formation by Stenotrophomonas maltophilia: Modulation by Quinolones, Trimethoprim-Sulfamethoxazole, and Ceftazidime , 2004, Antimicrobial Agents and Chemotherapy.

[82]  L. Saiman,et al.  Infection Control in Cystic Fibrosis , 2004, Clinical Microbiology Reviews.

[83]  Yuko Tanaka,et al.  The indirect pathogenicity of Stenotrophomonas maltophilia. , 2003, International journal of antimicrobial agents.

[84]  R. Gibson,et al.  Pathophysiology and management of pulmonary infections in cystic fibrosis. , 2003, American journal of respiratory and critical care medicine.

[85]  Tom Coenye,et al.  Burkholderia cenocepacia sp. nov.--a new twist to an old story. , 2003, Research in microbiology.

[86]  P. Berche,et al.  Use of 16S rRNA Gene Sequencing for Identification of Nonfermenting Gram-Negative Bacilli Recovered from Patients Attending a Single Cystic Fibrosis Center , 2002, Journal of Clinical Microbiology.

[87]  M. Martinez,et al.  Characterization of Flagella Produced by Clinical Strains of Stenotrophomonas maltophilia , 2002, Emerging infectious diseases.

[88]  L. Saiman,et al.  Identification and Antimicrobial Susceptibility ofAlcaligenes xylosoxidans Isolated from Patients with Cystic Fibrosis , 2001, Journal of Clinical Microbiology.

[89]  Tom Coenye,et al.  Taxonomy and Identification of the Burkholderia cepacia Complex , 2001, Journal of Clinical Microbiology.

[90]  K. W. Yu,et al.  Characteristics of patients with Burkholderia cepacia bacteremia. , 2001, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[91]  P. Vandamme,et al.  DNA-Based Diagnostic Approaches for Identification of Burkholderia cepacia Complex, Burkholderia vietnamiensis, Burkholderia multivorans,Burkholderia stabilis, and Burkholderia cepacia Genomovars I and III , 2000, Journal of Clinical Microbiology.

[92]  D. E. Anderson,et al.  Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model , 1996, Antimicrobial agents and chemotherapy.

[93]  J. Freney,et al.  In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents , 1988, Antimicrobial Agents and Chemotherapy.

[94]  M. McKee,et al.  Molecular typing in bacterial infections , 2013 .

[95]  A. Horsley,et al.  Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation. , 2012, The Cochrane database of systematic reviews.

[96]  N. Høiby,et al.  Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. , 2010, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[97]  M. Almuzara,et al.  In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. , 2010, International journal of antimicrobial agents.

[98]  G. Di Bonaventura,et al.  Subinhibitory concentrations of moxifloxacin decrease adhesion and biofilm formation of Stenotrophomonas maltophilia from cystic fibrosis. , 2010, Journal of medical microbiology.

[99]  R. Ariano,et al.  Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. , 2005, Diagnostic microbiology and infectious disease.

[100]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .