Dynamic noise perturbed generalized superior Mandelbrot sets

The invention of the latest tools and technology toward computer aided graphics and drawing completely change the thinking view of researchers in analyzing and studying the behavior of a dynamical system. Inspired by work already performed and by adopting the experimental mathematical methods of combining the theory of analytic function with computer aided drawing technology, we generated generalized superior Mandelbrot sets (SM-sets). Also, we analyzed the effect of dynamic noise on SM-sets.

[1]  Zhang Zhenfeng,et al.  The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative , 2009 .

[2]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[3]  Ruihong Jia,et al.  The Generalized Julia Set Perturbed by Composing Additive and Multiplicative Noises , 2009 .

[4]  Mamta Rani,et al.  Effect of Stochastic Noise on Superior Julia Sets , 2009, Journal of Mathematical Imaging and Vision.

[5]  Young Ik Kim,et al.  Accurate computation of component centers in the degree-n bifurcation set , 2004 .

[6]  J. Argyris,et al.  On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .

[7]  J. Argyris,et al.  On the Julia set of the perturbed Mandelbrot map , 2000 .

[8]  Xing-yuan Wang,et al.  RENDERING OF THE INSIDE STRUCTURE OF THE GENERALIZED M SET PERIOD BULBS BASED ON THE PRE-PERIOD , 2008 .

[9]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[10]  Wang Xing-Yuan,et al.  The divisor periodic point of escape-time N of the Mandelbrot set , 2007 .

[11]  Xing-yuan Wang,et al.  RESEARCH FRACTAL STRUCTURES OF GENERALIZED M-J SETS USING THREE ALGORITHMS , 2008 .

[12]  Joshua C. Sasmor,et al.  Fractals for functions with rational exponent , 2004, Comput. Graph..

[13]  J. Argyris,et al.  The influence of noise on the correlation dimension of chaotic attractors , 1998 .

[14]  Xingyuan Wang,et al.  ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .

[15]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[16]  C. Beck Physical meaning for Mandelbrot and Julia sets , 1999 .

[17]  Mamta Rani,et al.  Superior Mandelbrot Set , 2004 .

[18]  Ioannis Andreadis,et al.  On perturbations of the Mandelbrot map , 2000 .

[19]  Wang Xingyuan,et al.  Accurate Computation of Periodic Regions' Centers in the General M-Set with Integer Index Number , 2010 .

[20]  Wang Xing-yuan,et al.  Study on the physical meaning for generalized Mandelbrot-Julia sets based on the Langevin problem , 2004 .

[21]  Leon O. Chua,et al.  EXPERIMENTAL SYNCHRONIZATION OF CHAOS USING CONTINUOUS CONTROL , 1994 .

[22]  G. Álvarez,et al.  Equivalence between subshrubs and chaotic bands in the Mandelbrot set , 2006 .

[23]  M. Rani,et al.  Superior Julia Set , 2004 .

[24]  Xing-Yuan Wang,et al.  The general quaternionic M-J sets on the mapping z : = zalpha+c (alpha in N) , 2007, Comput. Math. Appl..

[25]  Ashish Negi,et al.  A new approach to dynamic noise on superior Mandelbrot set , 2008 .

[26]  Gonzalo Álvarez,et al.  External arguments of Douady cauliflowers in the Mandelbrot set , 2004, Comput. Graph..

[27]  Ioannis Andreadis,et al.  On a topological closeness of perturbed Mandelbrot sets , 2010, Appl. Math. Comput..

[28]  Uday G. Gujar,et al.  Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..

[29]  Xingyuan Wang,et al.  Additive perturbed generalized Mandelbrot-Julia sets , 2007, Appl. Math. Comput..

[30]  Xing-yuan Wang,et al.  Noise perturbed generalized Mandelbrot sets , 2008 .

[31]  Guangbin Wang,et al.  Some results on a generalized alternating iterative method , 2009, Appl. Math. Comput..

[32]  Ioannis Andreadis,et al.  On probabilistic Mandelbrot maps , 2009 .

[33]  Ioannis Andreadis,et al.  On a topological closeness of perturbed Julia sets , 2010, Appl. Math. Comput..

[34]  Xingyuan Wang,et al.  Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques , 2006, Appl. Math. Comput..

[35]  Earl F. Glynn The evolution of the gingerbread man , 1991, Comput. Graph..

[36]  Xu Zhang,et al.  Dynamics of the generalized M set on escape-line diagram , 2008, Appl. Math. Comput..