Quaternionic Weber Local Descriptor of Color Images

This paper proposes a simple but effective framework named quaternionic Weber local descriptor (QWLD) for color image feature extraction. Integrating quaternionic representation (QR) of the color image and Weber’s law (WL), QWLD possesses both their superiorities. It uses QR to handle all color channels of the image in a holistic way while preserving their relations, and applies WL to ensure that the derived descriptors are robust and discriminative. Using the QWLD framework, we further develop the quaternionic-increment-based Weber descriptor and quaternionic-distance-based Weber descriptor in terms of different perspectives. Extensive experiments on different color image recognition problems demonstrate that the proposed framework and descriptors outperform state-of-the-art local descriptors.

[1]  H. L. Hime “The Elements of Quaternions” , 1894, Nature.

[2]  Jean-Claude Souyris,et al.  Polarimetric Analysis of Bistatic SAR Images From Polar Decomposition: A Quaternion Approach , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Hong Liu,et al.  Quaternion-Based Impulse Noise Removal From Color Video Sequences , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  Akira Hirose,et al.  Quaternion Neural-Network-Based PolSAR Land Classification in Poincare-Sphere-Parameter Space , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Ming Zhu,et al.  Quaternion Fourier-Mellin moments for color images , 2011, Pattern Recognit..

[6]  Yuan Yan Tang,et al.  Person reidentification using quaternionic local binary pattern , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).

[7]  Shaogang Gong,et al.  Associating Groups of People , 2009, BMVC.

[8]  Shaogang Gong,et al.  Reidentification by Relative Distance Comparison , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Jean-Philippe Uzan,et al.  Detecting topology in a nearly flat spherical universe , 2002, astro-ph/0209389.

[10]  Sei-ichiro Kamata,et al.  Hypercomplex polar Fourier analysis for color image , 2011, 2011 18th IEEE International Conference on Image Processing.

[11]  Jing-Ming Guo,et al.  Content-Based Image Retrieval Using Error Diffusion Block Truncation Coding Features , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[12]  Shuicheng Yan,et al.  Clothing Attributes Assisted Person Reidentification , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[13]  Ming Zhu,et al.  Quaternion moment and its invariants for color object classification , 2014, Inf. Sci..

[14]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2001, IEEE Transactions on Image Processing.

[15]  Baba C. Vemuri,et al.  A Quaternion Framework for Color Image Smoothing and Segmentation , 2011, International Journal of Computer Vision.

[16]  Luc Van Gool,et al.  Depth and Appearance for Mobile Scene Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[17]  Andrew T. Walden,et al.  Matrix-Valued and Quaternion Wavelets , 2013, IEEE Transactions on Signal Processing.

[18]  Sanjit K. Mitra,et al.  A normalized color difference edge detector based on quaternion representation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[19]  Jiwen Lu,et al.  Neighborhood repulsed metric learning for kinship verification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[21]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[23]  Guangjun Zhang,et al.  SIFT Hardware Implementation for Real-Time Image Feature Extraction , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[24]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[25]  Xudong Jiang,et al.  LBP-Based Edge-Texture Features for Object Recognition , 2014, IEEE Transactions on Image Processing.

[26]  Gang Chen,et al.  Color Image Analysis by Quaternion-Type Moments , 2014, Journal of Mathematical Imaging and Vision.

[27]  Biao Wang,et al.  Illumination Normalization Based on Weber's Law With Application to Face Recognition , 2011, IEEE Signal Processing Letters.

[28]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[30]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[31]  Yimin Wang,et al.  Camera Compensation Using a Feature Projection Matrix for Person Reidentification , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[32]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[33]  Wanqing Li,et al.  Object detection using Non-Redundant Local Binary Patterns , 2010, 2010 IEEE International Conference on Image Processing.

[34]  Dehua Li,et al.  An Efficient Color-Impulse Detector and its Application to Color Images , 2007, IEEE Signal Processing Letters.

[35]  Hai Tao,et al.  Evaluating Appearance Models for Recognition, Reacquisition, and Tracking , 2007 .

[36]  Dimitris E. Koulouriotis,et al.  A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants , 2014, IEEE Transactions on Image Processing.

[37]  Laurent Mascarilla,et al.  New geometric fourier descriptors for color image recognition , 2010, 2010 IEEE International Conference on Image Processing.

[38]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[39]  Danilo P. Mandic,et al.  A Class of Quaternion Kalman Filters , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[40]  M. Pietikäinen,et al.  A robust descriptor based on Weber’s Law , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Gang Chen,et al.  Quaternion Zernike moments and their invariants for color image analysis and object recognition , 2012, Signal Process..

[42]  Kunio Kashino,et al.  Second-Order Configuration of Local Features for Geometrically Stable Image Matching and Retrieval , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[43]  Licheng Yu,et al.  Vector Sparse Representation of Color Image Using Quaternion Matrix Analysis , 2015, IEEE Transactions on Image Processing.

[44]  Xiaogang Wang,et al.  Shape and Appearance Context Modeling , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[45]  Soo-Chang Pei,et al.  Color image processing by using binary quaternion-moment-preserving thresholding technique , 1999, IEEE Trans. Image Process..

[46]  Gang Chen,et al.  Color Image Analysis by Quaternion Zernike Moments , 2010, 2010 20th International Conference on Pattern Recognition.

[47]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Xin Geng,et al.  Quaternion switching filter for impulse noise reduction in color image , 2012, Signal Process..

[49]  Yong Man Ro,et al.  Local Color Vector Binary Patterns From Multichannel Face Images for Face Recognition , 2012, IEEE Transactions on Image Processing.