Molecular Approaches for Multifield Continua: origins and current developments

The mechanical behaviour of complex materials, characterised at finer scales by the presence of heterogeneities of significant size and texture, strongly depends on their microstructural features. Attention is centred on multiscale approaches which aim to deduce properties and relations at a given macroscale by bridging information at proper underlying microlevel via energy equivalence criteria. Focus is on physically–based corpuscular–continuous models originated by the molecular models developed in the 19th century to give an explanation per causas of elasticity. In particular, the ‘mechanistic–energetistic’ approach by Voigt and Poincare who, when dealing with the paradoxes deriving from the search of the exact number of elastic constants in linear elasticity, respectively introduced molecular models with moment and multi–body interactions is examined. Thus overcoming the experimental discrepancies related to the so–called central–force scheme, originally adopted by Navier, Cauchy and Poisson.

[1]  George Green,et al.  Mathematical Papers of the Late George Green: On the Propagation of Light in crystallized Media , 1848 .

[2]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[3]  I. Stakgold The Cauchy relations in a molecular theory of elasticity , 1950 .

[4]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[5]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[7]  Clifford Ambrose Truesdell,et al.  Exact theory of stress and strain in rods and shells , 1957 .

[8]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[9]  R. Toupin Elastic materials with couple-stresses , 1962 .

[10]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[11]  Raymond D. Mindlin,et al.  Influence of couple-stresses on stress concentrations , 1963 .

[12]  D. Gazis,et al.  SURFACE EFFECTS AND INITIAL STRESS IN CONTINUUM AND LATTICE MODELS OF ELASTIC CRYSTALS , 1963 .

[13]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[14]  R. Rivlin,et al.  On cauchy's equations of motion , 1964 .

[15]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[16]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[17]  M. Gurtin Thermodynamics and the possibility of spatial interaction in elastic materials , 1965 .

[18]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[19]  A. Eringen Mechanics of micromorphic materials , 1966 .

[20]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[21]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[22]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[23]  E. Sternberg,et al.  The effect of couple-stresses on the stress concentration around a crack☆ , 1967 .

[24]  D. Bogy,et al.  The effect of couple-stresses on the corner singularity due to an asymmetric shear loading , 1968 .

[25]  I. Kunin The Theory of Elastic Media with Microstructure and the Theory of Dislocations , 1968 .

[26]  Mechanics of Generalized Continua , 1968 .

[27]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[28]  Stephen C. Cowin,et al.  Stress functions for cosserat elasticity , 1970 .

[29]  M. Beran,et al.  Mean field variations in a statistical sample of heterogeneous linearly elastic solids , 1970 .

[30]  A. A. Maradudin,et al.  Theory of lattice dynamics in the harmonic approximation , 1971 .

[31]  Charles B. Kafadar,et al.  Micropolar media—I the classical theory , 1971 .

[32]  G. Green ON the Laws of the Reflexion and Refraction of Light at the common Surface of two non-crystallized Media , 1972 .

[33]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[34]  A. Cental Eringen,et al.  Part I – Polar Field Theories , 1976 .

[35]  J. Ericksen Special Topics in Elastostatics , 1977 .

[36]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[37]  Stephen C. Cowin,et al.  A nonlinear theory of elastic materials with voids , 1979 .

[38]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[39]  G. Maugin Nonlocal theories or gradient-type theories - A matter of convenience , 1979 .

[40]  Gérard A. Maugin,et al.  The method of virtual power in continuum mechanics: Application to coupled fields , 1980 .

[41]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[42]  I. Kunin,et al.  Elastic Media with Microstructure I: One-Dimensional Models , 1982 .

[43]  Stephen C. Cowin,et al.  Linear elastic materials with voids , 1983 .

[44]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[45]  J. Ericksen The Cauchy and Born Hypotheses for Crystals. , 1983 .

[46]  P. Podio-Guidugli,et al.  Structured continua from a lagrangian point of view , 1983 .

[47]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[48]  Ted Belytschko,et al.  Continuum Theory for Strain‐Softening , 1984 .

[49]  J. E. Dunn,et al.  On the Thermomechanics of Interstitial Working , 1985 .

[50]  G. Capriz Continua with latent microstructure , 1985 .

[51]  Attila Askar,et al.  Lattice dynamical foundations of continuum theories , 1986 .

[52]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[53]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[54]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[55]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[56]  N. Ghoniem,et al.  Dislocation dynamics. I. A proposed methodology for deformation micromechanics. , 1990, Physical review. B, Condensed matter.

[57]  Ching S. Chang,et al.  Constitutive relation for a particulate medium with the effect of particle rotation , 1990 .

[58]  M. Pitteri On a statistical-kinetic model for generalized continua , 1990 .

[59]  Nicola Luigi Rizzi,et al.  Continuum modelling of a beam-like latticed truss: Identification of the constitutive functions for the contact and inertial actions , 1990 .

[60]  Edoardo Benvenuto,et al.  Introduction for An Introduction to the History of Structural Mechanics , 1991 .

[61]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[62]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[63]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[64]  Ioannis Vardoulakis,et al.  Micro-structure in kinematic-hardening plasticity , 1992 .

[65]  M. Gurtin,et al.  On the formulation of mechanical balance laws for structured continua , 1992 .

[66]  Ching S. Chang,et al.  ELASTIC-MATERIAL CONSTANTS FOR ISOTROPIC GRANULAR SOLIDS WITH PARTICLE ROTATION , 1992 .

[67]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[68]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[69]  N. Triantafyllidis,et al.  Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity , 1993 .

[70]  Elastic Constants for the H. C. P. Lattice , 1993 .

[71]  de R René Borst,et al.  Wave propagation, localization and dispersion in a gradient-dependent medium , 1993 .

[72]  X. Su Strain localization in plane strain micropolar elasticity , 1994, Archive of Applied Mechanics.

[73]  Nicolas Triantafyllidis,et al.  Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models , 1994 .

[74]  Francesco dell’Isola,et al.  The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power , 1995 .

[75]  P. Trovalusci,et al.  Masonry as structured continuum , 1995 .

[76]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[77]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[78]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[79]  A. Carlo A non-standard format for continuum mechanics , 1996 .

[80]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[81]  Stephen Roberts,et al.  Three-Dimensional simulation of dislocation-crack interactions in b.c.c. metals at the mesoscopic scale , 1996 .

[82]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[83]  Patrizia Trovalusci,et al.  Cosserat and Cauchy materials as continuum models of brick masonry , 1996 .

[84]  G. Zanzotto,et al.  The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals , 1996 .

[85]  Morton E. Gurtin,et al.  Configurational forces and the basic laws for crack propagation , 1996 .

[86]  P. Podio-Guidugli Inertia and invariance , 1997 .

[87]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[88]  P. Trovalusci,et al.  Limit Analysis for No-Tension and Frictional Three-Dimensional Discrete Systems* , 1998 .

[89]  P. Trovalusci,et al.  A continuum model with microstructure for materials with flaws and inclusions , 1998 .

[90]  S. Forest,et al.  Cosserat overall modeling of heterogeneous materials , 1998 .

[91]  Hussein M. Zbib,et al.  Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals , 1998 .

[92]  P. Trovalusci,et al.  Constitutive Relations for Elastic Microcracked Bodies: From a Lattice Model to a Multifield Continuum Description , 1999 .

[93]  P. Trovalusci,et al.  Material symmetries of micropolar continua equivalent to lattices , 1999 .

[94]  Adriana Garroni,et al.  Variational Formulation of Softening Phenomena in Fracture Mechanics: The One‐Dimensional Case , 1999 .

[95]  Iwona M Jasiuk,et al.  Couple-stress moduli and characteristics length of a two-phase composite , 1999 .

[96]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[97]  Rémy Dendievel,et al.  Estimating the overall properties of heterogeneous Cosserat materials , 1999 .

[98]  P. Trovalusci,et al.  Collapse behaviour of three-dimensional brick-block systems using non-linear programming , 2000 .

[99]  R. Paroni Homogenization of Polycrystalline¶Aggregates , 2000 .

[100]  Kirill Cherednichenko,et al.  On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media , 2000 .

[101]  C. Mariotti,et al.  Numerical study of rock and concrete behaviour by discrete element modelling , 2000 .

[102]  Gérard A. Maugin,et al.  Configurational mechanics of materials , 2001 .

[103]  S. Forest,et al.  Asymptotic analysis of heterogeneous Cosserat media , 2001 .

[104]  M. Ferris,et al.  Limit Analysis of Frictional Block Assemblies as a Mathematical Program With Complementarity Constraints , 2001 .

[105]  R. Phillips,et al.  Crystals, Defects and Microstructures: Modeling Across Scales , 2001 .

[106]  Iwona M Jasiuk,et al.  A micromechanically based couple–stress model of an elastic two-phase composite , 2001 .

[107]  B. Svendsen On the continuum modeling of materials with kinematic structure , 2001 .

[108]  F. Feyel Multiscale non linear FE2 analysis of composite structures : Fiber size effects , 2001 .

[109]  A. Needleman,et al.  Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions , 2001 .

[110]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[111]  Patrick Onck,et al.  Cosserat modeling of cellular solids , 2002 .

[112]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[113]  Florian Theil,et al.  Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice , 2002, J. Nonlinear Sci..

[114]  D. Parks,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[115]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[116]  M. Lambrecht,et al.  Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals , 2002 .

[117]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[118]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[119]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[120]  Jacob Fish,et al.  Constitutive Modeling Based on Atomistics , 2003 .

[121]  P. Trovalusci,et al.  Non-linear micropolar and classical continua for anisotropic discontinuous materials , 2003 .

[122]  Ekkehard Ramm,et al.  From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses , 2003 .

[123]  Paul Steinmann,et al.  On higher gradients in continuum-atomistic modelling , 2003 .

[124]  A new appraisal of old formulations of mechanics , 2004 .

[125]  L. Colombo,et al.  Atomistic study of the interaction between a microcrack and a hard inclusion inβ−SiC , 2004 .

[126]  Norman A. Fleck,et al.  Computational Evaluation of Strain Gradient Elasticity Constants , 2004 .

[127]  Jacob Fish,et al.  Discrete-to-continuum bridging based on multigrid principles , 2004 .

[128]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[129]  M. P. Ariza,et al.  Discrete Crystal Elasticity and Discrete Dislocations in Crystals , 2005 .

[130]  Terry J. Delph Conservation laws for multibody interatomic potentials , 2005 .

[131]  P. Trovalusci,et al.  A multifield model for blocky materials based on multiscale description , 2005 .

[132]  Sinisa Dj. Mesarovic,et al.  Energy, configurational forces and characteristic lengths associated with the continuum description of geometrically necessary dislocations , 2005 .

[133]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[134]  René de Borst,et al.  Mesh-independent discrete numerical representations of cohesive-zone models , 2006 .

[135]  B. Bochenek,et al.  Discrete-Continuum Transition at Interfaces of Nanocomposites , 2006 .

[136]  Morton E. Gurtin,et al.  Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales , 2006 .

[137]  Harold S. Park,et al.  Nano Mechanics and Materials: Theory, Multiscale Methods and Applications , 2006 .

[138]  P. Trovalusci,et al.  Multiscale modeling of materials by a multifield approach: Microscopic stress and strain distribution in fiber–matrix composites ☆ , 2006 .

[139]  M. Ostoja-Starzewski,et al.  On the Size of RVE in Finite Elasticity of Random Composites , 2006 .

[140]  Mgd Marc Geers,et al.  Multi-scale computational homogenization of structured thin sheets , 2007 .

[141]  Wei Li,et al.  Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures , 2007 .

[142]  Wai-Yim Ching,et al.  Ab Initio Calculation of Elastic Constants of Ceramic Crystals , 2007 .

[143]  M. Geers,et al.  An enhanced multi‐scale approach for masonry wall computations with localization of damage , 2007 .

[144]  J. Goddard Entropy and Material Instability in the Quasi-Static Mechanics of Granular Media , 2007 .

[145]  Multiscale Materials Modelling : Fundamentals and Applications , 2007 .

[146]  Mario Di Paola,et al.  Long-range cohesive interactions of non-local continuum faced by fractional calculus , 2008 .

[147]  P. Onck,et al.  Size effects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models , 2008 .

[148]  Danilo Capecchi,et al.  Genesis of the multiscale approach for materials with microstructure , 2009 .

[149]  P. Neff,et al.  On constitutive and configurational aspects of models for gradient continua with microstructure , 2009 .

[150]  Xikui Li,et al.  A version of Hill’s lemma for Cosserat continuum , 2009 .

[151]  Zhiye Zhao,et al.  Numerical investigation of crack growth in concrete subjected to compression by the generalized beam lattice model , 2009 .

[152]  Gianpietro Del Piero,et al.  ON THE METHOD OF VIRTUAL POWER IN CONTINUUM MECHANICS , 2009 .

[153]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[154]  Simone Cacace,et al.  A multi-phase transition model for dislocations with interfacial microstructure , 2009 .

[155]  G. Piero,et al.  Elastic bars with cohesive energy , 2009 .

[156]  P. Podio-Guidugli A virtual power format for thermomechanics , 2009 .

[157]  P. Trovalusci,et al.  From classical to Voigt’s molecular models in elasticity , 2010 .

[158]  P. Trovalusci,et al.  Coupling Continuum and Discrete Models of Materials with Microstructure: A Multiscale Algorithm , 2010 .

[159]  Extending Micromorphic Theory to Atomic Scale , 2010 .

[160]  E. Sacco,et al.  Cosserat model for periodic masonry deduced by nonlinear homogenization , 2010 .

[161]  Isaac Todhunter,et al.  A history of the theory of elasticity and of the strength of materials from Galilei to the present time , 2010 .

[162]  I. Vardoulakis,et al.  Homogenization of interlocking masonry structures using a generalized differential expansion technique , 2010 .

[163]  Gérard A. Maugin,et al.  Generalized Continuum Mechanics: What Do We Mean by That? , 2010 .

[164]  Andrea Bacigalupo,et al.  Second‐order computational homogenization of heterogeneous materials with periodic microstructure , 2010 .

[165]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[166]  E. Aifantis A Personal View on Current Generalized Theories of Elasticity and Plastic Flow , 2010 .

[167]  Gérard A. Maugin,et al.  Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics , 2010 .

[168]  P. Trovalusci,et al.  A generalized continuum formulation for composite microcracked materials and wave propagation in a bar , 2010 .

[169]  P. Podio-Guidugli,et al.  Hypertractions and hyperstresses convey the same mechanical information , 2009, 0906.4199.

[170]  S. Dj. Plasticity of crystals and interfaces: from discrete dislocations to size-dependent continuum theory , 2010 .

[171]  S. Mesarovic,et al.  Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity , 2010 .

[172]  E. Aifantis,et al.  Unconstrained and Cauchy-Born-constrained atomistic systems: deformational and configurational mechanics , 2011 .

[173]  V. Kouznetsova,et al.  Enabling microstructure-based damage and localization analyses and upscaling , 2011 .

[174]  Vinh Phu Nguyen,et al.  MULTISCALE CONTINUOUS AND DISCONTINUOUS MODELING OF HETEROGENEOUS MATERIALS: A REVIEW ON RECENT DEVELOPMENTS , 2011 .

[175]  P. Trovalusci,et al.  MULTIFIELD CONTINUUM SIMULATIONS FOR DAMAGED MATERIALS: A BAR WITH VOIDS , 2011 .

[176]  Jean-François Ganghoffer,et al.  Construction of Micropolar Continua from the Homogenization of Repetitive Planar Lattices , 2011 .

[177]  P. Trovalusci,et al.  Voigt and Poincaré’s mechanistic–energetic approaches to linear elasticity and suggestions for multiscale modelling , 2011 .

[178]  D. Addessi,et al.  A cosserat based multi-scale model for masonry structures , 2011 .

[179]  Somnath Ghosh,et al.  Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method , 2011 .

[180]  Macrohomogeneity condition in dynamics of micropolar media , 2011 .

[181]  On the “principle of virtual power” for arbitrary parts of a body , 2011 .

[182]  A. Bacigalupo,et al.  NON-LOCAL COMPUTATIONAL HOMOGENIZATION OF PERIODIC MASONRY , 2011 .

[183]  P. Trovalusci,et al.  Block masonry as equivalent micropolar continua: the role of relative rotations , 2012 .

[184]  Mgd Marc Geers,et al.  Novel boundary conditions for strain localization analyses in microstructural volume elements , 2012 .

[185]  E. Sacco,et al.  A multi-scale enriched model for the analysis of masonry panels , 2012 .

[186]  G. Herrmann,et al.  Mechanics in Material Space: with Applications to Defect and Fracture Mechanics , 2012 .

[187]  Stefan Diebels,et al.  Evaluation of generalized continuum substitution models for heterogeneous materials , 2012 .

[188]  Mgd Marc Geers,et al.  A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework , 2012, International Journal of Fracture.

[189]  Davide Bigoni,et al.  Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites Part I: Closed form expression for the effective higher-order constitutive tensor , 2013 .

[190]  G. Maugin The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool , 2013 .

[191]  Qipeng Liu Hill’s lemma for the average-field theory of Cosserat continuum , 2013 .

[192]  S. Forest,et al.  The thermodynamics of gradient elastoplasticity , 2014 .

[193]  P. Trovalusci,et al.  Derivation of microstructured continua from lattice systems via principle of virtual works: the case of masonry-like materials as micropolar, second gradient and classical continua , 2014 .

[194]  G. Piero Nonclassical continua, pseudobalance, and the law of action and reaction , 2014 .

[195]  Patrizia Trovalusci,et al.  Scale{dependent homogenization of random composites as micropolar continua , 2015 .