GaAs/GaInP multiquantum well long‐wavelength infrared detector using bound‐to‐continuum state absorption

We demonstrate an 8 μm superlattice infrared detector which utilizes bound‐to‐continuum state intersubband absorption in lattice‐matched GaAs/Ga0.5In0.5P multiquantum well structures grown by atmospheric pressure metalorganic vapor phase epitaxy. The band offsets of the GaAs/Ga0.5In0.5P heterosystem are obtained by comparing the theoretical absorption spectrum and the measured responsivity spectrum. The values determined for ΔEc and ΔEv are 221 and 262 meV, respectively.

[1]  W. J. Takei,et al.  Long‐wavelength infrared detection in a Kastalsky‐type superlattice structure , 1990 .

[2]  Kohroh Kobayashi,et al.  Room-temperature CW operation of AlGaInP double-heterostructure visible lasers , 1985 .

[3]  S. I. Long,et al.  Determination of valence and conduction‐band discontinuities at the (Ga,In) P/GaAs heterojunction by C‐V profiling , 1987 .

[4]  C. Bethea,et al.  Broadband 8–12 μm high‐sensitivity GaAs quantum well infrared photodetector , 1989 .

[5]  K. Tone,et al.  Selectively Doped n-GaInP/GaAs Heterostructures Grown by MOCVD , 1986 .

[6]  B. K. Janousek,et al.  High‐detectivity GaAs quantum well infrared detectors with peak responsivity at 8.2 μm , 1990 .

[7]  R. R. Abbott,et al.  Measurement of intersubband absorption in multiquantum well structures with monolithically integrated photodetectors , 1990 .

[8]  M. Razeghi,et al.  Conduction‐ and valence‐band offsets in GaAs/Ga0.51In0.49P single quantum wells grown by metalorganic chemical vapor deposition , 1990 .

[9]  Deborah L. Sivco,et al.  Mid‐infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures , 1990 .

[10]  Manijeh Razeghi,et al.  First observation of the two‐dimensional properties of the electron gas in Ga0.49In0.51P/GaAs heterojunctions grown by low pressure metalorganic chemical vapor deposition , 1986 .

[11]  Naresh Chand,et al.  Large photoconductive gain in quantum well infrared photodetectors , 1990 .

[12]  Manijeh Razeghi,et al.  Extremely high electron mobility in a GaAs‐GaxIn1−xP heterostructure grown by metalorganic chemical vapor deposition , 1989 .

[13]  M. Ozeki,et al.  Chloride vapor phase epitaxial growth of a Ga0.52In0.48P/GaAs heterostructure with an abrupt heterointerface , 1986 .

[14]  Sarah R. Kurtz,et al.  A 27.3 % efficient Ga0.5 In0.5 P/GaAs tandem solar cell , 1990 .

[15]  B. F. Levine,et al.  High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors , 1990 .

[16]  Kwong-Kit Choi,et al.  10 μm infrared hot‐electron transistors , 1990 .

[17]  Miyoko O. Watanabe,et al.  Interface properties for GaAs/InGaAlP heterojunctions by the capacitance‐voltage profiling technique , 1987 .

[18]  H. Kroemer,et al.  Heterojunction bipolar transistor using a (Ga,In)P emitter on a GaAs base, grown by molecular beam epitaxy , 1985, IEEE Electron Device Letters.

[19]  C. Bethea,et al.  Strong 8.2 μm infrared intersubband absorption in doped GaAs/AlAs quantum well waveguides , 1987 .

[20]  O. Byungsung,et al.  Exchange interaction effects in quantum well infrared detectors and absorbers , 1990 .