Smart telecare video monitoring for anomalous event detection

Behavior determination and multiple object tracking for video surveillance are two of the most active fields of machine vision. We describe our system, which we are developing for applications in tele-assistance for the elderly, as an early warning monitor for anomalous events. Our system is based upon the computer vision library OpenCV. In this article we describe the algorithms we have developed for tracking multiple people in indoor environments. We also describe a simple histogram based algorithm for discriminating arm movements and body positions.

[1]  Antonio Albiol,et al.  Fast motion detection in compressed domain for video surveillance , 2002 .

[2]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[3]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[4]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Antonio Albiol,et al.  Robust motion detector for video surveillance applications , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[6]  Tarak Gandhi,et al.  Pedestrian Protection Systems: Issues, Survey, and Challenges , 2007, IEEE Transactions on Intelligent Transportation Systems.

[7]  Richard S. Zemel,et al.  Learning stick-figure models using nonparametric Bayesian priors over trees , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Gian Luca Foresti,et al.  Automatic detection and indexing of video-event shots for surveillance applications , 2002, IEEE Trans. Multim..

[9]  Tao Zhang,et al.  Active contours for tracking distributions , 2004, IEEE Transactions on Image Processing.

[10]  Eric Moulines,et al.  An algorithm for maximum likelihood estimation of hidden Markov models with unknown state-tying , 1998, IEEE Trans. Speech Audio Process..

[11]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[12]  Dariu Gavrila,et al.  Monocular Pedestrian Detection: Survey and Experiments , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Monique Thonnat,et al.  Multi-sensors Analysis for Everyday Activity Monitoring , 2007 .

[15]  Hironobu Fujiyoshi,et al.  Moving target classification and tracking from real-time video , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[16]  Iván Pau,et al.  An Implementation Framework for Smart Home Telecare Services , 2007, Future Generation Communication and Networking (FGCN 2007).

[17]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[18]  G. Hartvigsen,et al.  Current status and future perspectives in telecare for elderly people suffering from chronic diseases , 2008, Journal of telemedicine and telecare.

[19]  Tobias Höllerer,et al.  Hybrid Feature Tracking and User Interaction for Markerless Augmented Reality , 2008, 2008 IEEE Virtual Reality Conference.

[20]  B. Boufama,et al.  Tracking Multiple People for Video Surveillance , 2006 .

[21]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[22]  Trevor P. Martin Fuzzy Ambient Intelligence in Home Telecare , 2006, IEA/AIE.

[23]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).