Multilevel Factor Analysis Models for Continuous and Discrete Data

A very general class of multilevel factor analysis and structural equation models is proposed which are derived from considering the concatenation of a series of building blocks that use sets of factor structures defined within the levels of a multilevel model. An MCMC estimation algorithm is proposed for this structure to produce parameter chains for point and interval estimates. We show how traditional models for binary response factor analysis can be extended to fit multiple factors within a multilevel data structure. It is shown how a probit link function has useful interpretations and in particular that this allows the joint modeling of binary, ordered and continuous response variables. The model is applied to the study of country differences in a large scale study of Mathematics achievement in schools.

[1]  Andreas Schleicher Measuring Student Knowledge and Skills: A New Framework for Assessment. , 1999 .

[2]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .

[3]  Stan Lipovetsky,et al.  Latent Variable Models and Factor Analysis , 2001, Technometrics.

[4]  Xiao-Li Meng,et al.  Posterior Predictive $p$-Values , 1994 .

[5]  Roderick P. McDonald,et al.  The dimensionality of tests and items , 1981 .

[6]  Hongtu Zhu,et al.  Statistical analysis of nonlinear factor analysis models , 1999 .

[7]  Dorothy T. Thayer,et al.  EM algorithms for ML factor analysis , 1982 .

[8]  D. Hedeker,et al.  A random-effects ordinal regression model for multilevel analysis. , 1994, Biometrics.

[9]  William J. Browne,et al.  MCMC Estimation in MlwiN , 2002 .

[10]  Harvey Goldstein,et al.  Balanced versus unbalanced designs for linear structural relations in two‐level data , 1989 .

[11]  Harvey Goldstein,et al.  Multiple membership multiple classification (MMMC) models , 2001 .

[12]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[13]  D. Rubin Multiple Imputation After 18+ Years , 1996 .

[14]  Harvey Goldstein,et al.  Five decades of item response modelling , 1989 .

[15]  S. Rabe-Hesketh,et al.  Generalized linear latent and mixed models , 2000 .

[16]  Ian H. Langford,et al.  A User’s Guide to MLwiN, Version 2.10 , 2000 .

[17]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[18]  Harvey Goldstein,et al.  Multilevel factor analysis modelling using Markov Chain Monte Carlo (MCMC) estimation , 2002 .

[19]  Aki Vehtari Discussion to "Bayesian measures of model complexity and fit" by Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A. , 2002 .

[20]  Nicholas T. Longford,et al.  Factor analysis for clustered observations , 1992 .

[21]  Christine E. DeMars,et al.  Item Response Theory , 2010, Assessing Measurement Invariance for Applied Research.

[22]  Roderick P. McDonald,et al.  A general model for two-level data with responses missing at random , 1993 .

[23]  Rosemary Baker,et al.  Item response theory , 1985 .

[24]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[25]  Brian Everitt,et al.  An Introduction to Latent Variable Models , 1984 .

[26]  Peter W. Hill,et al.  Modeling Educational Effectiveness in Classrooms: The Use of Multi-Level Structural Equations to Model Students’ Progress , 1998 .

[27]  Roderick P. McDonald,et al.  Factor Analysis and Related Methods , 1985 .