USING DIVERSITY TO GUIDE THE SEARCH IN MULTI-OBJECTIVE OPTIMIZATION

The overall aim in multi-objective optimization is to aid the decisionmaking process when tackling multi-criteria optimization problems. In an a posteriori approach, the strategy is to produce a set of nondominated solutions that represent a good approximation to the Pareto optimal front so that the decision-makers can select the most appropriate solution. In this paper we propose the use of diversity measures to guide the search and hence, to enhance the performance of the multi-objective search algorithm. We propose the use of diversity measures to guide the search in two different ways. First, the diversity in the objective space is used as a helper objective when evaluating candidate solutions. Secondly, the diversity in the solution space is used to choose the most promising strategy to approximate the Pareto optimal front. If the diversity is low, the emphasis is on exploration. If the diversity is high, the emphasis is on exploitation. We carry out our experiments on a two-objective optimization problem, namely space allocation in academic institutions. This is a real-world problem in which the decision-makers want to see a set of alternative diverse solutions in order to compare them and select the most appropriate allocation.

[1]  Rajeev Kumar,et al.  Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm , 2002, Evolutionary Computation.

[2]  Xavier Gandibleux,et al.  The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.

[3]  Rasmus K. Ursem,et al.  Diversity-Guided Evolutionary Algorithms , 2002, PPSN.

[4]  Huidong Jin,et al.  Adaptive diversity maintenance and convergence guarantee in multiobjective evolutionary algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[5]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[6]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[8]  Kenneth A. De Jong,et al.  Measurement of Population Diversity , 2001, Artificial Evolution.

[9]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[10]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[11]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[12]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[13]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[14]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[15]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[16]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[17]  Marco Laumanns,et al.  On the Effects of Archiving, Elitism, and Density Based Selection in Evolutionary Multi-objective Optimization , 2001, EMO.

[18]  G. Yen,et al.  Rank-density based multiobjective genetic algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  Clarisse Dhaenens,et al.  A Hybrid Evolutionary Approach for Multicriteria Optimization Problems: Application to the Flow Shop , 2001, EMO.

[20]  Bernhard Sendhoff,et al.  A critical survey of performance indices for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[21]  G. Yen,et al.  Dynamic population size in multiobjective evolutionary algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[22]  A. Farhang-Mehr,et al.  Diversity assessment of Pareto optimal solution sets: an entropy approach , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  David W. Corne,et al.  Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem , 2002, HIS.

[24]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[25]  Kwong-Sak Leung,et al.  Asynchronous self-adjustable island genetic algorithm for multi-objective optimization problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[26]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[27]  Tong Heng Lee,et al.  Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons , 2004, Artificial Intelligence Review.

[28]  Marco Farina,et al.  Fuzzy Optimality and Evolutionary Multiobjective Optimization , 2003, EMO.

[29]  Yaochu Jin,et al.  Connectedness, regularity and the success of local search in evolutionary multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[30]  Edmund K. Burke,et al.  Hyperheuristic Approaches for Multiobjective Optimisation , 2003 .

[31]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[32]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[33]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[34]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[35]  Peter J. Fleming,et al.  Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation , 2003, EMO.

[36]  Edmund K. Burke,et al.  Space Allocation: An Analysis of Higher Education Requirements , 1997, PATAT.

[37]  Theodor J. Stewart,et al.  Multiple criteria decision analysis - an integrated approach , 2001 .

[38]  J. Teich,et al.  The role of /spl epsi/-dominance in multi objective particle swarm optimization methods , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[39]  Shapour Azarm,et al.  Minimal Sets of Quality Metrics , 2003, EMO.

[40]  Milind Dawande,et al.  Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions , 2000, J. Comb. Optim..

[41]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[42]  M. Kisiel-Dorohinicki,et al.  Agent-based evolutionary multiobjective optimisation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[43]  Kiam Heong Ang,et al.  Preliminary statement on the current progress of multi-objective evolutionary algorithm performance measurement , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).