Holographic Action for the Self-Dual Field

We revisit the construction of self-dual field theory in 4l+2 dimensions using Chern-Simons theory in 4l+3 dimensions, building on the work of Witten. Careful quantization of the Chern-Simons theory reveals all the topological subtleties associated with the self-dual partition function, including the generalization of the choice of spin structure needed to define the theory. We write the partition function for arbitrary torsion background charge, and in the presence of sources. We show how this approach leads to the formulation of an action principle for the self-dual field.

[1]  D. Freed,et al.  Heisenberg groups and noncommutative fluxes , 2006, hep-th/0605200.

[2]  D. Freed,et al.  Elliptic Cohomology: The M -theory 3-form and E 8 gauge theory , 2007 .

[3]  G. Moore,et al.  Classification of abelian spin Chern-Simons theories , 2005, hep-th/0505235.

[4]  G. Moore Anomalies, Gauss laws, and Page charges in M-theory , 2004, hep-th/0409158.

[5]  A. Gerasimov,et al.  Towards integrability of topological strings. I. Three-forms on Calabi-Yau manifolds , 2004, hep-th/0409238.

[6]  H. O. Erdin Characteristic Classes , 2004 .

[7]  D. Freed,et al.  Elliptic Cohomology: The M -theory 3-form and E 8 gauge theory , 2007 .

[8]  I. Singer,et al.  Quadratic functions in geometry, topology, and M-theory , 2002, math/0211216.

[9]  E. Verlinde,et al.  On The Partition Sum of The NS Five-Brane , 2002, hep-th/0205281.

[10]  D. Freed K-Theory in Quantum Field Theory , 2002, math-ph/0206031.

[11]  J. Maldacena,et al.  D-brane charges in five-brane backgrounds , 2001, hep-th/0108152.

[12]  E. Witten,et al.  A Derivation of K theory from M theory , 2000, hep-th/0005090.

[13]  D. Freed,et al.  On Ramond-Ramond fields and K-theory , 2000, hep-th/0002027.

[14]  E. Witten Duality relations among topological effects in string theory , 1999, hep-th/9912086.

[15]  Y. Miao,et al.  Self-Duality of Various Chiral Boson Actions , 1999, hep-th/9912066.

[16]  E. Witten,et al.  Self-duality, Ramond-Ramond fields, and K-theory , 1999, hep-th/9912279.

[17]  M. Henneaux,et al.  Symmetry-deforming interactions of chiral p-forms , 1999, hep-th/9912077.

[18]  M. Henneaux,et al.  Deformations of chiral two-forms in six dimensions , 1999, hep-th/9909094.

[19]  B. Nilsson,et al.  Holomorphic factorization of correlation functions in (4k+2)-dimensional (2k)-form gauge theory , 1999, hep-th/9908107.

[20]  Pierre Deligne,et al.  Quantum Fields and Strings: A Course for Mathematicians , 1999 .

[21]  G. Dall’Agata,et al.  Action for IIB supergravity in 10 dimensions , 1998, hep-th/9812170.

[22]  D. Sorokin,et al.  Dual Actions for Chiral Bosons , 1998, hep-th/9808049.

[23]  M. Henneaux,et al.  Comments on Chiral p-Forms , 1998, hep-th/9806062.

[24]  C. Nappi,et al.  A modular invariant partition function for the fivebrane , 1998, hep-th/9806016.

[25]  P. Howe,et al.  The Six Dimensional Self-Dual Tensor , 1997, hep-th/9702111.

[26]  P. Howe,et al.  Covariant field equations of the M theory five-brane , 1997, hep-th/9702008.

[27]  I. Bandos,et al.  Covariant Action for the Super-Five-Brane of M Theory , 1997, hep-th/9701149.

[28]  D. Sorokin,et al.  Covariant action for a D = 11 five-brane with the chiral field , 1997, hep-th/9701037.

[29]  J. Schwarz Coupling a self-dual tensor to gravity in six dimensions , 1997, hep-th/9701008.

[30]  J. Schwarz,et al.  Interacting chiral gauge fields in six dimensions and Born-Infeld theory , 1996, hep-th/9611065.

[31]  E. Witten Five-brane effective action in M theory , 1996, hep-th/9610234.

[32]  I. Bengtsson Manifest Duality in Born–Infeld Theory , 1996, hep-th/9612174.

[33]  N. Berkovits Super-Maxwell actions with manifest duality , 1996, hep-th/9610226.

[34]  N. Berkovits Local Actions with Electric and Magnetic Sources , 1996, hep-th/9610134.

[35]  I. Bengtsson,et al.  On Chiral p-Forms , 1996, hep-th/9609102.

[36]  Henneaux,et al.  Covariant path integral for chiral p-forms. , 1996, Physical review. D, Particles and fields.

[37]  E. Verlinde Global Aspects of Electric-Magnetic Duality , 1995, hep-th/9506011.

[38]  A. Restuccia,et al.  Duality symmetric actions and canonical quantization , 1994 .

[39]  Yaoyang Liu,et al.  New way of the derivation of first order Wess-Zumino terms , 1994 .

[40]  J. Schwarz,et al.  Duality symmetric actions , 1993, hep-th/9304154.

[41]  E. Witten Quantum Background Independence In String Theory , 1993, hep-th/9306122.

[42]  S. D. Pietra,et al.  Geometric quantization of Chern-Simons gauge theory , 1991 .

[43]  Wotzasek Wess-Zumino term for chiral bosons. , 1991, Physical review letters.

[44]  Yong -Shi Wu,et al.  Covariant quantization of chiral bosons and OSp(1, 1|2) symmetry , 1990 .

[45]  Maximilian Kreuzer,et al.  The gravitational anomalies , 1990 .

[46]  M. Pernici,et al.  Lagrangians for chiral bosons and the heterotic string , 1988 .

[47]  M. Henneaux,et al.  Dynamics of chiral (self-dual) p-forms , 1988 .

[48]  C. Hull Covariant quantization of chiral bosons and anomaly cancellation , 1988 .

[49]  Mezincescu,et al.  Critical dimensions for chiral bosons. , 1988, Physical review. D, Particles and fields.

[50]  Jackiw,et al.  Self-dual fields as charge-density solitons. , 1987, Physical review letters.

[51]  P. Nelson,et al.  Bosonization on higher genus Riemann surfaces , 1987 .

[52]  C. Imbimbo,et al.  The lagrangian formulation of chiral scalars , 1987 .

[53]  P. Nelson,et al.  Bosonization in arbitrary genus , 1986 .

[54]  P. Goddard,et al.  Algebras, Lattices and Strings , 1985 .

[55]  W. Siegel Manifest Lorentz invariance sometimes requires non-linearity☆ , 1984 .

[56]  J. Schwarz,et al.  Field theories that have no manifestly Lorentz-invariant formulation , 1982 .

[57]  C. Isham,et al.  Generalized spin structures on four dimensional space-times , 1980 .