Radiation hardening efficiency of gate sizing and transistor stacking based on standard cells

[1]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[2]  J. F. Leavy,et al.  Radiation-Induced Integrated Circuit Latchup , 1969 .

[3]  J. V. Osborn,et al.  Total dose hardness of three commercial CMOS microelectronics foundries , 1997, RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294).

[4]  J. V. Osborn,et al.  Total dose hardness of three commercial CMOS microelectronics foundries , 1997 .

[5]  Olivier Coudert,et al.  Gate sizing for constrained delay/power/area optimization , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[6]  Vivek De,et al.  A new technique for standby leakage reduction in high-performance circuits , 1998, 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215).

[7]  Federico Faccio,et al.  Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects , 1999 .

[8]  M. Baze,et al.  A digital CMOS design technique for SEU hardening , 2000 .

[9]  R. Koga,et al.  Application of hardness-by-design methodology to radiation-tolerant ASIC technologies , 2000 .

[10]  Stephen LaLumondiere,et al.  A single event latchup suppression technique for COTS CMOS ICs , 2003 .

[11]  Shekhar Y. Borkar,et al.  Designing reliable systems from unreliable components: the challenges of transistor variability and degradation , 2005, IEEE Micro.

[12]  F. Wrobel,et al.  Criterion for SEU occurrence in SRAM deduced from circuit and device Simulations in case of neutron-induced SER , 2005, IEEE Transactions on Nuclear Science.

[13]  R.C. Baumann,et al.  Radiation-induced soft errors in advanced semiconductor technologies , 2005, IEEE Transactions on Device and Materials Reliability.

[14]  Kartik Mohanram,et al.  Gate sizing to radiation harden combinational logic , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[15]  Paul D. Franzon,et al.  FreePDK: An Open-Source Variation-Aware Design Kit , 2007, 2007 IEEE International Conference on Microelectronic Systems Education (MSE'07).

[16]  R. Lacoe Improving Integrated Circuit Performance Through the Application of Hardness-by-Design Methodology , 2008, IEEE Transactions on Nuclear Science.

[17]  D. Munteanu,et al.  Modeling and Simulation of Single-Event Effects in Digital Devices and ICs , 2008, IEEE Transactions on Nuclear Science.

[18]  F. Wrobel,et al.  Prediction of Multiple Cell Upset Induced by Heavy Ions in a 90 nm Bulk SRAM , 2009, IEEE Transactions on Nuclear Science.

[19]  M. Cabanas-Holmen,et al.  Heavy Ion and High Energy Proton-Induced Single Event Transients in 90 nm Inverter, NAND and NOR Gates , 2009, IEEE Transactions on Nuclear Science.

[20]  P E Dodd,et al.  Current and Future Challenges in Radiation Effects on CMOS Electronics , 2010, IEEE Transactions on Nuclear Science.

[21]  R A Reed,et al.  SEU Prediction From SET Modeling Using Multi-Node Collection in Bulk Transistors and SRAMs Down to the 65 nm Technology Node , 2011, IEEE Transactions on Nuclear Science.

[22]  P. Marshall,et al.  32 and 45 nm Radiation-Hardened-by-Design (RHBD) SOI Latches , 2011, IEEE Transactions on Nuclear Science.

[23]  Guilherme Flach,et al.  Gate Sizing Minimizing Delay and Area , 2011, 2011 IEEE Computer Society Annual Symposium on VLSI.

[24]  Frédéric Saigné,et al.  MC-ORACLE: A tool for predicting Soft Error Rate , 2011, Comput. Phys. Commun..

[25]  Luis Entrena,et al.  Constrained Placement Methodology for Reducing SER Under Single-Event-Induced Charge Sharing Effects , 2012, IEEE Transactions on Nuclear Science.

[26]  P. E. Dodd,et al.  Physics of Multiple-Node Charge Collection and Impacts on Single-Event Characterization and Soft Error Rate Prediction , 2013, IEEE Transactions on Nuclear Science.

[27]  Shuming Chen,et al.  Novel Layout Technique for Single-Event Transient Mitigation Using Dummy Transistor , 2013, IEEE Transactions on Device and Materials Reliability.

[28]  B. L. Bhuva,et al.  Reliability-Aware Synthesis of Combinational Logic With Minimal Performance Penalty , 2013, IEEE Transactions on Nuclear Science.

[29]  William H. Robinson,et al.  Alternative Standard Cell Placement Strategies for Single-Event Multiple-Transient Mitigation , 2014, 2014 IEEE Computer Society Annual Symposium on VLSI.

[30]  Shuming Chen,et al.  A Constrained Layout Placement Approach to Enhance Pulse Quenching Effect in Large Combinational Circuits , 2014, IEEE Transactions on Device and Materials Reliability.

[31]  J. S. Kauppila,et al.  Utilizing device stacking for area efficient hardened SOI flip-flop designs , 2014, 2014 IEEE International Reliability Physics Symposium.

[32]  L. Dilillo,et al.  Determining Realistic Parameters for the Double Exponential Law that Models Transient Current Pulses , 2014, IEEE Transactions on Nuclear Science.

[33]  Guillaume Hubert,et al.  Impact of scaling on the soft error sensitivity of bulk, FDSOI and FinFET technologies due to atmospheric radiation , 2015, Integr..

[34]  J. S. Kauppila,et al.  An Area Efficient Stacked Latch Design Tolerant to SEU in 28 nm FDSOI Technology , 2016, IEEE Transactions on Nuclear Science.

[35]  Eduardo Chielle,et al.  Reliability on ARM Processors Against Soft Errors Through SIHFT Techniques , 2016, IEEE Transactions on Nuclear Science.

[36]  Fernanda Gusmão de Lima Kastensmidt,et al.  Evaluation of radiation-induced soft error in majority voters designed in 7 nm FinFET technology , 2017, Microelectron. Reliab..

[37]  J.-L. Autran,et al.  Analysis of the charge sharing effect in the SET sensitivity of bulk 45 nm standard cell layouts under heavy ions , 2018, Microelectron. Reliab..

[38]  F. Wrobel,et al.  Impact of Complex Logic Cell Layout on the Single-Event Transient Sensitivity , 2019, IEEE Transactions on Nuclear Science.