An Hm-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues

We develop an Hm-conforming (m ≥ 1) spectral element method on multi-dimensional domain associated with the partition into multi-dimensional rectangles. We construct a set of basis functions on the interval [−1, 1] that are made up of the generalized Jacobi polynomials (GJPs) and the nodal basis functions. So the basis functions on multi-dimensional rectangles consist of the tensorial product of the basis functions on the interval [−1, 1]. Then we construct the spectral element interpolation operator and prove the associated interpolation error estimates. Finally, we apply the H2-conforming spectral element method to the Helmholtz transmission eigenvalues that is a hot problem in the field of engineering and mathematics.

[1]  Xu-Hong Yu,et al.  Spectral Element Method for Mixed Inhomogeneous Boundary Value Problems of Fourth Order , 2014, Journal of Scientific Computing.

[2]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[3]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[4]  Li-Lian Wang,et al.  A new triangular spectral element method I: implementation and analysis on a triangle , 2012, Numerical Algorithms.

[5]  L. Tongxing,et al.  Transmission eigenvalue problem for inhomogeneous absorbing media with mixed boundary condition , 2016 .

[6]  Rong An,et al.  Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation , 2016, J. Sci. Comput..

[7]  Hai Bi,et al.  Non-conforming finite element methods for transmission eigenvalue problem ☆ , 2016, 1601.01068.

[8]  Liwei Xu,et al.  A spectral projection method for transmission eigenvalues , 2016, 1605.00727.

[9]  Jiguang Sun Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..

[10]  F. Chatelin The Spectral Approximation of Linear Operators with Applications to the Computation of Eigenelements of Differential and Integral Operators , 1981 .

[11]  Jiguang Sun,et al.  Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..

[12]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[13]  Jie Shen,et al.  A Triangular Spectral Element Method Using Fully Tensorial Rational Basis Functions , 2009, SIAM J. Numer. Anal..

[14]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[15]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[16]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[17]  Jie Shen,et al.  Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem , 2015, Comput. Math. Appl..

[18]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[19]  Ben-yu Guo,et al.  Spectral method on quadrilaterals , 2010, Math. Comput..

[20]  Xia Ji,et al.  A Multigrid Method for Helmholtz Transmission Eigenvalue Problems , 2014, J. Sci. Comput..

[21]  Hai Bi,et al.  Mixed Methods for the Helmholtz Transmission Eigenvalues , 2016, SIAM J. Sci. Comput..

[22]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[23]  Jiayu Han,et al.  An Adaptive Finite Element Method for the Transmission Eigenvalue Problem , 2016, Journal of Scientific Computing.

[24]  Xia Ji,et al.  Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.

[25]  Hai Bi,et al.  Error estimates and a two grid scheme for approximating transmission eigenvalues , 2015, 1506.06486.