Radiation Efficiency of Nano-Radius Dipole Antennas in the Microwave and Far-infrared Regimes

At microwave and far-infrared frequencies, the radiation efficiency of a wire antenna with a radius value smaller than a few hundred nanometers is very low, due to large wire impedances and associated high ohmic losses. However, with the continued miniaturization of electronic devices, nano-radius interconnects and antennas are desirable. In this work, the relationships among wire radius, conductivity, frequency, and ohmic loss are examined for dipole antennas. Simple formulas are derived for the distributed resistance, effective conductivity, and radius required to achieve a desired radiation efficiency, and particular emphasis is given to half-wavelength antennas. Several methods to improve antenna efficiency at sub-100-nm radius values are discussed, including the use of superconducting nanowires and multi-wall carbon nanotubes.

[2]  Dresselhaus,et al.  Electron-phonon coupling and the electrical conductivity of fullerene nanotubules. , 1993, Physical review. B, Condensed matter.

[3]  T. Mallouk,et al.  Synthesis and characterization of superconducting single-crystal Sn nanowires , 2003 .

[4]  Ronold W. P. King,et al.  The imperfectly conducting cylindrical transmitting antenna , 1966 .

[5]  Y. Massoud,et al.  Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques , 2006, IEEE Transactions on Electron Devices.

[6]  Robert C. Hansen,et al.  Electrically Small, Superdirective, and Superconducting Antennas , 2006 .

[7]  T. Mayer,et al.  Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires , 2005, cond-mat/0502111.

[8]  P. L. Werner,et al.  Techniques for evaluating the uniform current vector potential at the isolated singularity of the cylindrical wire kernel , 1994 .

[9]  G. Miano,et al.  An Integral Formulation for the Electrodynamics of Metallic Carbon Nanotubes Based on a Fluid Model , 2006, IEEE Transactions on Antennas and Propagation.

[10]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[11]  J. Richmond Scattering by imperfectly conducting wires , 1967 .

[12]  D. S. Jones,et al.  Methods in electromagnetic wave propagation , 1979 .

[13]  C. Trautmann,et al.  Electrical characterization of electrochemically grown single copper nanowires , 2003 .

[14]  P. J. Burke An RF circuit model for carbon nanotubes , 2003 .

[15]  George W. Hanson Fundamental transmitting properties of carbon nanotube antennas , 2005 .

[16]  W. Steinhögl,et al.  Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller , 2005 .

[17]  Javier Alda,et al.  Optical antennas for nano-photonic applications , 2005 .

[18]  Thomas J. Kempa,et al.  Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes , 2004 .

[19]  Alvin Leng Sun Loke,et al.  Microstructure and reliability of copper interconnects , 1998 .

[20]  G. Thiele,et al.  Antenna theory and design , 1981 .

[21]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[22]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[23]  B. Zeng,et al.  Properties of Carbon Nanotube Antenna , 2007, 2007 International Conference on Microwave and Millimeter Wave Technology.

[24]  Size dependent breakdown of superconductivity in ultranarrow nanowires. , 2005, Nano letters.

[25]  J. Meindl,et al.  Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) , 2005, IEEE Electron Device Letters.

[26]  S. Datta,et al.  Transport effects on signal propagation in quantum wires , 2005, IEEE Transactions on Electron Devices.

[27]  Akhlesh Lakhtakia,et al.  Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas , 2006 .

[28]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[29]  P. Burke,et al.  Quantitative theory of nanowire and nanotube antenna performance , 2004, IEEE Transactions on Nanotechnology.

[30]  Raafat R. Mansour,et al.  Microwave superconductivity , 2002 .

[31]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[32]  A. Bid,et al.  Temperature dependence of the resistance of metallic nanowires of diameter≥15nm: applicability of Bloch-Grüneisen theorem , 2006, cond-mat/0607674.

[33]  S. M. Black,et al.  Institute of Physics Publishing Journal of Optics A: Pure and Applied Optics Online Pattern Recognition in Noisy Background by Means of Wavelet Coefficients Thresholding , 2005 .

[34]  T. Van Duzer,et al.  Principles of Superconductive Devices and Circuits , 1981 .

[35]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[36]  A. V. Gusakov,et al.  Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation , 1999 .

[37]  G. Hanson,et al.  On the Applicability of the Surface Impedance Integral Equation for Optical and Near Infrared Copper Dipole Antennas , 2006, IEEE Transactions on Antennas and Propagation.

[38]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[39]  Ji-Yong Park,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[40]  G. Hanson,et al.  Current on an infinitely-long carbon nanotube antenna excited by a gap generator , 2006, IEEE Transactions on Antennas and Propagation.

[41]  R. Hansen Electrically Small, Superdirective, and Superconducting Antennas: Hansen/Electrically Small, Superdirective, and Superconducting Antennas , 2006 .

[42]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[43]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[44]  P. Burke Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes , 2002 .

[45]  Arthur Nieuwoudt,et al.  Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits , 2006, JETC.

[46]  P. Burke,et al.  Microwave transport in metallic single-walled carbon nanotubes. , 2005, Nano letters.

[47]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[48]  C. Kittel Introduction to solid state physics , 1954 .

[49]  A. Naeemi,et al.  Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI , 2005, IEEE Electron Device Letters.

[50]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .