Strong normalization property for second order linear logic

The paper contains the first complete proof of strong normalization (SN) for full second order linear logic (LL): Girard's original proof uses a standardization theorem which is not proven. We introduce sliced pure structures (sps), a very general version of Girard's proof-nets, and we apply to sps Gandy's method to infer SN from weak normalization (WN). We prove a standardization theorem for sps: if WN without erasing steps holds for an sps, then it enjoys SN. A key step in our proof of standardization is a confluence theorem for sps obtained by using only a very weak form of correctness, namely acyclicity slice by slice. We conclude by showing how standardization for sps allows to prove SN of LL, using as usual Girard's reducibility candidates.

[1]  Roberto Di Cosmo,et al.  Proof Nets And Explicit Substitutions , 2003, Math. Struct. Comput. Sci..

[2]  Aleksander Wojdyga Short Proofs of Strong Normalization , 2008, MFCS.

[3]  Olivier Laurent,et al.  Slicing Polarized Additive Normalization , 2022 .

[4]  Rob J. van Glabbeek,et al.  Proof nets for unit-free multiplicative-additive linear logic (extended abstract) , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[5]  Terese Term rewriting systems , 2003, Cambridge tracts in theoretical computer science.

[6]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[7]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[8]  Laurent Regnier,et al.  Lambda-calcul et reseaux , 1992 .

[9]  Paolo Tranquilli Confluence of Pure Differential Nets with Promotion , 2009, CSL.

[10]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[11]  J. Girard Proof Theory and Logical Complexity , 1989 .

[12]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[13]  Lorenzo Tortora de Falco,et al.  Additives of linear logic and normalization - Part I: a (restricted) Church-Rosser property , 2003, Theor. Comput. Sci..

[14]  Lorenzo Tortora de Falco Reseaux, coherence et experiences obsessionnelles , 2000 .

[15]  Vincent Danos La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .

[16]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[17]  Roberto Di Cosmo,et al.  Proof nets and explicit substitutions , 2000, Mathematical Structures in Computer Science.

[18]  Morten Heine Sørensen,et al.  Strong Normalization from Weak Normalization in Typed Lambda-Calculi , 1997, Inf. Comput..

[19]  Paolo Tranquilli,et al.  Intuitionistic differential nets and lambda-calculus , 2011, Theor. Comput. Sci..

[20]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[21]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[22]  Olivier Laurent,et al.  Polarized and focalized linear and classical proofs , 2005, Ann. Pure Appl. Log..

[23]  J. Girard PROOF-NETS : THE PARALLEL SYNTAX FOR PROOF-THEORY , 1996 .

[24]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[25]  Rob J. van Glabbeek,et al.  Proof nets for unit-free multiplicative-additive linear logic , 2005, TOCL.

[26]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[27]  Olivier Laurent,et al.  Obsessional Cliques: A Semantic Characterization of Bounded Time Complexity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[28]  Mitsuhiro Okada Phase Semantic Cut-Elimination and Normalization Proofs of First- and Higher-Order Linear Logic , 1999, Theor. Comput. Sci..