Quantum teleportation for continuous variables and related quantum information processing

Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view.

[1]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[2]  A.J. Miller,et al.  Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities , 2005, IEEE Transactions on Applied Superconductivity.

[3]  Philippe Grangier,et al.  Quantum cloning and teleportation criteria for continuous quantum variables , 2001 .

[4]  F. Kannari,et al.  7.2 dB quadrature squeezing at 860 nm with periodically-poled KTiOPO4 , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[5]  M. Sasaki,et al.  Multiphoton discrimination at telecom wavelength with charge integration photon detector , 2005, quant-ph/0503050.

[6]  Gerd Leuchs,et al.  Unconditional Quantum Cloning of Coherent States with Linear Optics , 2005 .

[7]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[8]  Jacob F. Sherson,et al.  Quantum teleportation between light and matter , 2006, Nature.

[9]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[10]  Akira Furusawa,et al.  Fidelity and information in the quantum teleportation of continuous variables , 2000, quant-ph/0003053.

[11]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[12]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[13]  Masahide Sasaki,et al.  Photon subtracted squeezed states generated with periodically poled KTiOPO(4). , 2007, Optics express.

[14]  Hidehiro Yonezawa,et al.  Experimental creation of a fully inseparable tripartite continuous-variable state. , 2003, Physical review letters.

[15]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[16]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[17]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[18]  H. J. Kimble,et al.  Quantum teleportation of light beams , 2003 .

[19]  Julien Laurat,et al.  Generating Optical Schrödinger Kittens for Quantum Information Processing , 2006, Science.

[20]  Phase-space approach to continuous variable quantum teleportation , 2004 .

[21]  Hidehiro Yonezawa,et al.  Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. , 2007, Optics express.

[22]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[23]  A. Furusawa,et al.  Time domain Einstein-Podolsky-Rosen correlation , 2006, quant-ph/0607091.

[24]  Radim Filip,et al.  Measurement-induced continuous-variable quantum interactions , 2005 .

[25]  J I Cirac,et al.  Quantum benchmark for storage and transmission of coherent states. , 2005, Physical review letters.

[26]  B. Yurke Optical back-action-evading amplifiers , 1985 .

[27]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[28]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[29]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[30]  S. Braunstein,et al.  Demonstration of quantum telecloning of optical coherent states. , 2005, Physical review letters.

[31]  Barry C Sanders,et al.  Direct observation of nonclassical photon statistics in parametric down-conversion. , 2004, Physical review letters.

[32]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[33]  Yurke,et al.  Back-action evading measurements of an optical field using parametric down conversion. , 1989, Physical review letters.

[34]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[35]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[36]  Ou,et al.  Backaction evading measurements for quantum nondemolition detection and quantum optical tapping. , 1994, Physical review letters.

[37]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[38]  Timothy C. Ralph,et al.  Experimental investigation of continuous-variable quantum teleportation , 2002, quant-ph/0207179.

[39]  J I Cirac,et al.  Quantum communication between atomic ensembles using coherent light. , 2000, Physical review letters.

[40]  A. Furusawa,et al.  High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. , 2005, Physical review letters.

[41]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[42]  T. Anhut,et al.  Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter , 1997 .

[43]  K Mølmer,et al.  Generation of a superposition of odd photon number states for quantum information networks. , 2006, Physical review letters.

[44]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[45]  Masashi Ban,et al.  Experimental demonstration of quantum teleportation of a squeezed state (7 pages) , 2005 .