Equivariant K-Homology of the Classifying Space for Proper Actions

These notes are a compendium to a series of lectures concerning the topological aspects of the Baum-Connes Conjecture — the left hand side of the equation K * G (E G) ≅ K * top (C r * (G)) — the equivariant K-homology of E G. Besides of a presentation of the material needed to compute * G (E G,the reader will find an extensive discussion of many conjectures related to the Baum-Connes Conjecture.

[1]  W. Lück Dimension theory of arbitrary modules over finite von Neumann algebras and L^2-Betti numbers, I, Foundations , 1998 .

[2]  A. Valette Introduction To The Baum-Connes Conjecture , 2002 .

[3]  Groups acting on CAT(0) cube complexes , 1997, math/9702231.

[4]  K-theoretic amenability for discrete groups. , 1983 .

[5]  Z. Yosimura A note on complex K-theory of infinite CW-complexes , 1974 .

[6]  Whitehead groups and the Bass conjecture , 2003, math/0301205.

[7]  N. Higson,et al.  Amenable group actions and the Novikov conjecture , 2000 .

[8]  B. Eckmann Idempotents in a complex group algebra, projective modules, and the von Neumann algebra , 2001 .

[9]  Patrick Dehornoy,et al.  Braid groups and left distributive operations , 1994 .

[10]  Hyman Bass,et al.  Euler characteristics and characters of discrete groups , 1976 .

[11]  G. Pedersen C-Algebras and Their Automorphism Groups , 1979 .

[12]  B. Eckmann Cyclic homology of groups and the bass conjecture , 1986 .

[13]  W. Gruyter,et al.  Chern characters for proper equivariant homology theories and applications to K- and L-theory , 2002 .

[14]  S. Ferry,et al.  Proper affine isometric actions of amenable groups , 1995 .

[15]  Jérôme Chabert Stabilité de la conjecture de Baum—Connes pour certains produits semi-directs de groupes , 1999 .

[16]  Pierre de la Harpe,et al.  La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .

[17]  T. Schick,et al.  Spaces with Vanishing ℓ2-Homology and their Fundamental Groups (after Farber and Weinberger) , 2001, 0903.3762.

[18]  Hervé Oyono-Oyono La conjecture de Baum-Connes pour les groupes agissant sur les arbres , 1998 .

[19]  M. A. Armstrong On the fundamental group of an orbit space , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[21]  U. Haagerup An example of a non nuclearC*-algebra, which has the metric approximation property , 1978 .

[22]  A. Hattori Rank Element of a Projective Module , 1965, Nagoya Mathematical Journal.

[23]  R. Wood Banach algebras and Bott periodicity , 1966 .

[24]  Igor Mineyev,et al.  The Baum-Connes conjecture for hyperbolic groups , 2001, math/0105086.

[25]  P. Kropholler,et al.  Groups acting on finite dimensional spaces with finite stabilizers , 1998 .

[26]  W. Lück L 2 -Invariants of Regular Coverings of Compact Manifolds and CW-Complexes , 2001 .

[27]  A. Valette,et al.  Groups with the Haagerup Property: Gromov’s a-T-menability , 2001 .

[28]  J. Chabert Baum-Connes conjecture for some semi-direct products , 2000 .

[29]  A. Guichardet Cohomologie des groupes topologiques et des algèbres de Lie , 1980 .

[30]  W. Lück The type of the classifying space for a family of subgroups , 2000 .

[31]  W. Lück Hilbert modules and modules over finite von Neumann algebras and applications to $L^2$-invariants , 1997 .

[32]  M. Jakob A bordism-type description of homology , 1998 .

[33]  K-Theory for C*-Algebras of One-Relator Groups , 1999 .

[34]  D. Meintrup On the Universal Space for Group Actions with Compact Isotropy , 2003 .

[35]  T. Schick Integrality of $L^2$-Betti numbers , 2000, math/0001101.

[36]  Vincent Lafforgue,et al.  K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes , 2002 .

[37]  N. Higson,et al.  C*-Algebras and Controlled Topology , 1997 .

[38]  Permanence Properties of the Baum-Connes Conjecture , 2001 .

[39]  ON THE ZERO-IN-THE-SPECTRUM CONJECTURE , 1999, math/9911077.

[40]  H. Oyono-Oyono Baum-Connes conjecture and extensions , 2001 .

[41]  I. Emmanouil On a class of groups satisfying Bass' conjecture , 1998 .

[42]  W. Lück The relation between the Baum-Connes Conjecture and the Trace Conjecture , 2002 .

[43]  S. Waner,et al.  Equivariant Homotopy and Cohomology Theory , 1996 .

[44]  A. Heller,et al.  The topology of discrete groups , 1980 .

[45]  Glen E. Bredon,et al.  Equivariant cohomology theories , 1967 .

[46]  N. Higson Bivariant K-theory and the Novikov conjecture , 2000 .

[47]  G. Kasparov EquivariantKK-theory and the Novikov conjecture , 1988 .

[48]  M. J. Dunwoody Accessibility and Groups of Cohomological Dimension One , 1979 .

[49]  Guido Mislin On the classifying space for proper actions , 2001 .

[50]  B. Nucinkis Is there an easy algebraic characterisation of¶universal proper G-spaces? , 2000 .

[51]  Peter H. Kropholler,et al.  Hierarchical decompositions, generalized Tate cohomology, and groups of type (FP)? , 1995 .

[52]  Daan Krammer,et al.  The braid group B4 is linear , 2000 .

[53]  A. Berrick,et al.  From acyclic groups to the Bass conjecture for amenable groups , 2004, 1004.1941.

[54]  R. Bieri,et al.  Homological dimension of discrete groups , 1981 .

[55]  Thomas Schick,et al.  On a question of Atiyah , 2000 .

[56]  Alexander Lubotzky,et al.  Abelian and solvable subgroups of the mapping class groups , 1983 .

[57]  J. Schafer Relative cyclic homology and the Bass conjecture , 1992 .

[58]  V. Lafforgue,et al.  Counterexamples to the Baum—Connes conjecture , 2002 .

[59]  Jérôme Chabert Deux remarques sur l'application de Baum ConnesTwo remarks about the Baum Connes map , 2001 .

[60]  Property (RD) for Cocompact Lattices in a Finite Product of Rank One Lie Groups with Some Rank Two Lie Groups , 2001, math/0107001.

[61]  W. Lück Transformation groups and algebraic K-theory , 1989 .

[62]  C. H. Dowker TOPOLOGY OF METRIC COMPLEXES. , 1952 .

[63]  J. Stallings Centerless groups—an algebraic formulation of Gottlieb’s theorem , 1965 .

[64]  J. Tu The Baum-Connes Conjecture and Discrete Group Actions on Trees , 1999 .

[65]  P. Linnell Geometry and Cohomology in Group Theory: Analytic Versions of the Zero Divisor Conjecture , 1998 .

[66]  J. Milnor Construction of Universal Bundles, II , 1956 .

[67]  F. P. Peterson,et al.  SOME REMARKS ON CHERN CLASSES , 1959 .

[68]  D. Rolfsen,et al.  BRAIDS, ORDERINGS AND ZERO DIVISORS , 1998 .

[69]  W. Thurston,et al.  Every connected space has the homology of a K(π,1) , 1976 .

[70]  G. Mislin Mapping Class Groups, Characteristic Classes and Bernoulli Numbers , 1997 .

[71]  Ioan Mackenzie James,et al.  Handbook of algebraic topology , 1995 .

[72]  V. Lafforgue A proof of property (RD) for cocompact lattices of and . , 2000 .

[73]  V. Lafforgue Une démonstration de la conjecture de Baum-Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T) , 1998 .

[74]  J. Faraut,et al.  Distances hilbertiennes invariantes sur un espace homogene , 1974 .

[75]  J. Rosenberg,et al.  C*-algebras, positive scalar curvature, and the Novikov conjecture , 1983 .

[76]  Stephen J. Bigelow,et al.  Braid groups are linear , 2000, math/0005038.

[77]  Operator -theory for groups which act properly and isometrically on Hilbert space , 1997 .

[78]  M. Karoubi K-Theory: An Introduction , 1978 .

[79]  Alain Connes,et al.  CYCLIC COHOMOLOGY, THE NOVIKOV CONJECTURE AND HYPERBOLIC GROUPS , 1990 .

[80]  R. Powers Simplicity of the $C\sp{\ast} $-algebra associated with the free group on two generators , 1975 .

[81]  P. Jolissaint Rapidly decreasing functions in reduced *-algebras of groups , 1990 .

[82]  B. Eckmann Introduction to ℓ2-methods in topology: Reduced ℓ2-homology, harmonic chains, ℓ2-betti numbers , 2000 .

[83]  P. Mostert Local cross sections in locally compact groups , 1953 .

[84]  James F. Davis,et al.  Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. , 1998 .

[85]  P. Linnell Decomposition of Augmentation Ideals and Relation Modules , 1983 .

[86]  Approximating L2‐invariants and the Atiyah conjecture , 2001, math/0107049.

[87]  A. Miščenko INFINITE-DIMENSIONAL REPRESENTATIONS OF DISCRETE GROUPS, AND HIGHER SIGNATURES , 1974 .

[88]  Robert M. Switzer,et al.  Algebraic topology--homotopy and homology , 1975 .

[89]  T. Dieck Orbittypen und äquivariante Homologie II , 1972 .

[90]  Thomas Schick,et al.  The Spectral Measure of Certain Elements of the Complex Group Ring of a Wreath Product , 2002 .

[91]  The Zero-in-the-Spectrum Question , 1996, dg-ga/9604005.

[92]  O. Morgenthaler,et al.  Proceedings of the Conference , 1930 .

[93]  M. Pimsner KK-groups of crossed products by groups acting on trees , 1986 .

[94]  E. Pedersen,et al.  Identifying assembly maps in K- and L-theory , 2004 .

[95]  N. Higson,et al.  Analytic K-Homology , 2000 .

[96]  Every Coxeter group acts amenably on a compact space , 1999, math/9911245.

[97]  W. Lück Dimension theory of arbitrary modules over finite von Neumann algebras and L^2-Betti numbers, II, Applications to Grothendieck groups, L^2-Euler characteristics and Burnside groups , 1998 .

[98]  A. Connes,et al.  Classifying Space for Proper Actions and K-Theory of Group C*-algebras , 2004 .

[99]  Idempotents in complex group rings: theorems of Zalesskii and Bass revisited , 1998 .

[100]  Michael A. Mandell,et al.  CHAPTER 6 – Modern Foundations for Stable Homotopy Theory , 1995 .

[101]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .