Equivariant K-Homology of the Classifying Space for Proper Actions
暂无分享,去创建一个
[1] W. Lück. Dimension theory of arbitrary modules over finite von Neumann algebras and L^2-Betti numbers, I, Foundations , 1998 .
[2] A. Valette. Introduction To The Baum-Connes Conjecture , 2002 .
[3] Groups acting on CAT(0) cube complexes , 1997, math/9702231.
[4] K-theoretic amenability for discrete groups. , 1983 .
[5] Z. Yosimura. A note on complex K-theory of infinite CW-complexes , 1974 .
[6] Whitehead groups and the Bass conjecture , 2003, math/0301205.
[7] N. Higson,et al. Amenable group actions and the Novikov conjecture , 2000 .
[8] B. Eckmann. Idempotents in a complex group algebra, projective modules, and the von Neumann algebra , 2001 .
[9] Patrick Dehornoy,et al. Braid groups and left distributive operations , 1994 .
[10] Hyman Bass,et al. Euler characteristics and characters of discrete groups , 1976 .
[11] G. Pedersen. C-Algebras and Their Automorphism Groups , 1979 .
[12] B. Eckmann. Cyclic homology of groups and the bass conjecture , 1986 .
[13] W. Gruyter,et al. Chern characters for proper equivariant homology theories and applications to K- and L-theory , 2002 .
[14] S. Ferry,et al. Proper affine isometric actions of amenable groups , 1995 .
[15] Jérôme Chabert. Stabilité de la conjecture de Baum—Connes pour certains produits semi-directs de groupes , 1999 .
[16] Pierre de la Harpe,et al. La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .
[17] T. Schick,et al. Spaces with Vanishing ℓ2-Homology and their Fundamental Groups (after Farber and Weinberger) , 2001, 0903.3762.
[18] Hervé Oyono-Oyono. La conjecture de Baum-Connes pour les groupes agissant sur les arbres , 1998 .
[19] M. A. Armstrong. On the fundamental group of an orbit space , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.
[20] R. Lyndon,et al. Combinatorial Group Theory , 1977 .
[21] U. Haagerup. An example of a non nuclearC*-algebra, which has the metric approximation property , 1978 .
[22] A. Hattori. Rank Element of a Projective Module , 1965, Nagoya Mathematical Journal.
[23] R. Wood. Banach algebras and Bott periodicity , 1966 .
[24] Igor Mineyev,et al. The Baum-Connes conjecture for hyperbolic groups , 2001, math/0105086.
[25] P. Kropholler,et al. Groups acting on finite dimensional spaces with finite stabilizers , 1998 .
[26] W. Lück. L 2 -Invariants of Regular Coverings of Compact Manifolds and CW-Complexes , 2001 .
[27] A. Valette,et al. Groups with the Haagerup Property: Gromov’s a-T-menability , 2001 .
[28] J. Chabert. Baum-Connes conjecture for some semi-direct products , 2000 .
[29] A. Guichardet. Cohomologie des groupes topologiques et des algèbres de Lie , 1980 .
[30] W. Lück. The type of the classifying space for a family of subgroups , 2000 .
[31] W. Lück. Hilbert modules and modules over finite von Neumann algebras and applications to $L^2$-invariants , 1997 .
[32] M. Jakob. A bordism-type description of homology , 1998 .
[33] K-Theory for C*-Algebras of One-Relator Groups , 1999 .
[34] D. Meintrup. On the Universal Space for Group Actions with Compact Isotropy , 2003 .
[35] T. Schick. Integrality of $L^2$-Betti numbers , 2000, math/0001101.
[36] Vincent Lafforgue,et al. K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes , 2002 .
[37] N. Higson,et al. C*-Algebras and Controlled Topology , 1997 .
[38] Permanence Properties of the Baum-Connes Conjecture , 2001 .
[39] ON THE ZERO-IN-THE-SPECTRUM CONJECTURE , 1999, math/9911077.
[40] H. Oyono-Oyono. Baum-Connes conjecture and extensions , 2001 .
[41] I. Emmanouil. On a class of groups satisfying Bass' conjecture , 1998 .
[42] W. Lück. The relation between the Baum-Connes Conjecture and the Trace Conjecture , 2002 .
[43] S. Waner,et al. Equivariant Homotopy and Cohomology Theory , 1996 .
[44] A. Heller,et al. The topology of discrete groups , 1980 .
[45] Glen E. Bredon,et al. Equivariant cohomology theories , 1967 .
[46] N. Higson. Bivariant K-theory and the Novikov conjecture , 2000 .
[47] G. Kasparov. EquivariantKK-theory and the Novikov conjecture , 1988 .
[48] M. J. Dunwoody. Accessibility and Groups of Cohomological Dimension One , 1979 .
[49] Guido Mislin. On the classifying space for proper actions , 2001 .
[50] B. Nucinkis. Is there an easy algebraic characterisation of¶universal proper G-spaces? , 2000 .
[51] Peter H. Kropholler,et al. Hierarchical decompositions, generalized Tate cohomology, and groups of type (FP)? , 1995 .
[52] Daan Krammer,et al. The braid group B4 is linear , 2000 .
[53] A. Berrick,et al. From acyclic groups to the Bass conjecture for amenable groups , 2004, 1004.1941.
[54] R. Bieri,et al. Homological dimension of discrete groups , 1981 .
[55] Thomas Schick,et al. On a question of Atiyah , 2000 .
[56] Alexander Lubotzky,et al. Abelian and solvable subgroups of the mapping class groups , 1983 .
[57] J. Schafer. Relative cyclic homology and the Bass conjecture , 1992 .
[58] V. Lafforgue,et al. Counterexamples to the Baum—Connes conjecture , 2002 .
[59] Jérôme Chabert. Deux remarques sur l'application de Baum ConnesTwo remarks about the Baum Connes map , 2001 .
[60] Property (RD) for Cocompact Lattices in a Finite Product of Rank One Lie Groups with Some Rank Two Lie Groups , 2001, math/0107001.
[61] W. Lück. Transformation groups and algebraic K-theory , 1989 .
[62] C. H. Dowker. TOPOLOGY OF METRIC COMPLEXES. , 1952 .
[63] J. Stallings. Centerless groups—an algebraic formulation of Gottlieb’s theorem , 1965 .
[64] J. Tu. The Baum-Connes Conjecture and Discrete Group Actions on Trees , 1999 .
[65] P. Linnell. Geometry and Cohomology in Group Theory: Analytic Versions of the Zero Divisor Conjecture , 1998 .
[66] J. Milnor. Construction of Universal Bundles, II , 1956 .
[67] F. P. Peterson,et al. SOME REMARKS ON CHERN CLASSES , 1959 .
[68] D. Rolfsen,et al. BRAIDS, ORDERINGS AND ZERO DIVISORS , 1998 .
[69] W. Thurston,et al. Every connected space has the homology of a K(π,1) , 1976 .
[70] G. Mislin. Mapping Class Groups, Characteristic Classes and Bernoulli Numbers , 1997 .
[71] Ioan Mackenzie James,et al. Handbook of algebraic topology , 1995 .
[72] V. Lafforgue. A proof of property (RD) for cocompact lattices of and . , 2000 .
[73] V. Lafforgue. Une démonstration de la conjecture de Baum-Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T) , 1998 .
[74] J. Faraut,et al. Distances hilbertiennes invariantes sur un espace homogene , 1974 .
[75] J. Rosenberg,et al. C*-algebras, positive scalar curvature, and the Novikov conjecture , 1983 .
[76] Stephen J. Bigelow,et al. Braid groups are linear , 2000, math/0005038.
[77] Operator -theory for groups which act properly and isometrically on Hilbert space , 1997 .
[78] M. Karoubi. K-Theory: An Introduction , 1978 .
[79] Alain Connes,et al. CYCLIC COHOMOLOGY, THE NOVIKOV CONJECTURE AND HYPERBOLIC GROUPS , 1990 .
[80] R. Powers. Simplicity of the $C\sp{\ast} $-algebra associated with the free group on two generators , 1975 .
[81] P. Jolissaint. Rapidly decreasing functions in reduced *-algebras of groups , 1990 .
[82] B. Eckmann. Introduction to ℓ2-methods in topology: Reduced ℓ2-homology, harmonic chains, ℓ2-betti numbers , 2000 .
[83] P. Mostert. Local cross sections in locally compact groups , 1953 .
[84] James F. Davis,et al. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. , 1998 .
[85] P. Linnell. Decomposition of Augmentation Ideals and Relation Modules , 1983 .
[86] Approximating L2‐invariants and the Atiyah conjecture , 2001, math/0107049.
[87] A. Miščenko. INFINITE-DIMENSIONAL REPRESENTATIONS OF DISCRETE GROUPS, AND HIGHER SIGNATURES , 1974 .
[88] Robert M. Switzer,et al. Algebraic topology--homotopy and homology , 1975 .
[89] T. Dieck. Orbittypen und äquivariante Homologie II , 1972 .
[90] Thomas Schick,et al. The Spectral Measure of Certain Elements of the Complex Group Ring of a Wreath Product , 2002 .
[91] The Zero-in-the-Spectrum Question , 1996, dg-ga/9604005.
[92] O. Morgenthaler,et al. Proceedings of the Conference , 1930 .
[93] M. Pimsner. KK-groups of crossed products by groups acting on trees , 1986 .
[94] E. Pedersen,et al. Identifying assembly maps in K- and L-theory , 2004 .
[95] N. Higson,et al. Analytic K-Homology , 2000 .
[96] Every Coxeter group acts amenably on a compact space , 1999, math/9911245.
[97] W. Lück. Dimension theory of arbitrary modules over finite von Neumann algebras and L^2-Betti numbers, II, Applications to Grothendieck groups, L^2-Euler characteristics and Burnside groups , 1998 .
[98] A. Connes,et al. Classifying Space for Proper Actions and K-Theory of Group C*-algebras , 2004 .
[99] Idempotents in complex group rings: theorems of Zalesskii and Bass revisited , 1998 .
[100] Michael A. Mandell,et al. CHAPTER 6 – Modern Foundations for Stable Homotopy Theory , 1995 .
[101] Kenneth S. Brown,et al. Cohomology of Groups , 1982 .