Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles.

[1]  Eun-Mi Kim,et al.  Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. , 2009, International journal of pharmaceutics.

[2]  Y. Gogotsi,et al.  Wet chemistry route to hydrophobic blue fluorescent nanodiamond. , 2009, Journal of the American Chemical Society.

[3]  B. Draznin,et al.  Rescuing 3T3-L1 adipocytes from insulin resistance induced by stimulation of Akt-mammalian target of rapamycin/p70 S6 kinase (S6K1) pathway and serine phosphorylation of insulin receptor substrate-1: effect of reduced expression of p85alpha subunit of phosphatidylinositol 3-kinase and S6K1 kinase. , 2009, Endocrinology.

[4]  D. Gruen,et al.  Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks. , 2009, The journal of physical chemistry. B.

[5]  Yury Gogotsi,et al.  Nanodiamond-polymer composite fibers and coatings. , 2009, ACS nano.

[6]  Robert Langer,et al.  Impact of nanotechnology on drug delivery. , 2009, ACS nano.

[7]  Kinam Park,et al.  Insulin-loaded microcapsules for in vivo delivery. , 2009, Molecular pharmaceutics.

[8]  K. Loh,et al.  Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[9]  Tayyaba Hasan,et al.  Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. , 2009, Molecular pharmaceutics.

[10]  Yan Liu,et al.  Cell and molecular mechanisms of keratinocyte function stimulated by insulin during wound healing , 2009, BMC Cell Biology.

[11]  Travis L. Jennings,et al.  Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia , 2008 .

[12]  Erik Pierstorff,et al.  Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. , 2008, ACS nano.

[13]  Robert Langer,et al.  Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[14]  Connie B. Chang,et al.  Nanoscale double emulsions stabilized by single-component block copolypeptides , 2008, Nature.

[15]  R. Misra Magnetic nanoparticle carrier for targeted drug delivery: perspective, outlook and design , 2008 .

[16]  Robert Langer,et al.  Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. , 2008, ACS nano.

[17]  E. Osti Skin ph variations from the acute phase to re-epithelialization in burn patients treated with new materials (burnshield®, semipermeable adhesive film, dermasilk®, and hyalomatrix®). Non-invasive preliminary experimental clinical trial. , 2008, Annals of burns and fire disasters.

[18]  Richard A. Anderson,et al.  Insulin Increases Tristetraprolin and Decreases VEGF Gene Expression in Mouse 3T3–L1 Adipocytes , 2008, Obesity.

[19]  T. Hilder,et al.  Carbon nanotubes as drug delivery nanocapsules , 2008 .

[20]  Huan-Cheng Chang,et al.  Mass production and dynamic imaging of fluorescent nanodiamonds. , 2008, Nature nanotechnology.

[21]  Nicholas A Peppas,et al.  Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. , 2008, Biomacromolecules.

[22]  Houjin Huang,et al.  Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. , 2008, ACS nano.

[23]  Alexey P. Puzyr,et al.  Nanodiamonds with novel properties : A biological study , 2007 .

[24]  Erik Pierstorff,et al.  Active nanodiamond hydrogels for chemotherapeutic delivery. , 2007, Nano letters.

[25]  B. Sarmento,et al.  Oral bioavailability of insulin contained in polysaccharide nanoparticles. , 2007, Biomacromolecules.

[26]  D. Chinkes,et al.  Local insulin-zinc injection accelerates skin donor site wound healing. , 2007, The Journal of surgical research.

[27]  C. Highley,et al.  In Situ Cross-linkable Hyaluronan Hydrogels Containing Polymeric Nanoparticles for Preventing Postsurgical Adhesions , 2007, Annals of surgery.

[28]  Hsiao-Yun Wu,et al.  Characterization and application of single fluorescent nanodiamonds as cellular biomarkers , 2007, Proceedings of the National Academy of Sciences.

[29]  Saber M Hussain,et al.  Are diamond nanoparticles cytotoxic? , 2007, The journal of physical chemistry. B.

[30]  Joachim Dissemond,et al.  Influence of pH on wound-healing: a new perspective for wound-therapy? , 2007, Archives of Dermatological Research.

[31]  Wei Zhao,et al.  Nanocrystalline diamond modified gold electrode for glucose biosensing. , 2006, Biosensors & bioelectronics.

[32]  K. Sugibayashi,et al.  Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin. , 2006, International journal of pharmaceutics.

[33]  S. Sajeesh,et al.  Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. , 2006, International journal of pharmaceutics.

[34]  James A. Misewich,et al.  Biological cellular response to carbon nanoparticle toxicity , 2006 .

[35]  Maureen R. Gwinn,et al.  Nanoparticles: Health Effects—Pros and Cons , 2006, Environmental health perspectives.

[36]  J. Dobson,et al.  Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery , 2006, Gene Therapy.

[37]  M. Sastry,et al.  Gold nanoparticles as carriers for efficient transmucosal insulin delivery. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  K. Kisich,et al.  The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. , 2005, American Journal of Respiratory and Critical Care Medicine.

[39]  M. Yudasaka,et al.  Carbon nanohorns as anticancer drug carriers. , 2005, Molecular pharmaceutics.

[40]  Ya‐Ping Sun,et al.  Nanosizing drug particles in supercritical fluid processing. , 2004, Journal of the American Chemical Society.

[41]  Huan-Cheng Chang,et al.  Adsorption and immobilization of cytochrome c on nanodiamonds. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[42]  Xiong Zhang,et al.  [Effects of topical application of insulin on the wound healing in scalded rats]. , 2004, Zhonghua shao shang za zhi = Zhonghua shaoshang zazhi = Chinese journal of burns.

[43]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[44]  A. Klibanov,et al.  Moisture-Induced Aggregation of Lyophilized Insulin , 2004, Pharmaceutical Research.

[45]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[46]  Jayanth Panyam,et al.  Biodegradable nanoparticles for drug and gene delivery to cells and tissue. , 2003, Advanced drug delivery reviews.

[47]  T. Deming,et al.  Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. , 2002, Advanced drug delivery reviews.

[48]  T. Asano,et al.  Insulin Inhibits Apoptosis of Macrophage Cell Line, THP-1 Cells, via Phosphatidylinositol-3-Kinase–Dependent Pathway , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[49]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[50]  F. Greenway,et al.  Topical insulin in wound healing: a randomised, double-blind, placebo-controlled trial. , 1999, Journal of wound care.

[51]  Cevc,et al.  Lipid vesicles and membrane fusion. , 1999, Advanced drug delivery reviews.

[52]  R. Barrow,et al.  Effects of insulin on wound healing. , 1998, The Journal of trauma.

[53]  J. Andrade,et al.  Protein adsorption on low-temperature isotropic carbon: I. Protein conformational change probed by differential scanning calorimetry. , 1994, Journal of biomedical materials research.

[54]  R. Farías,et al.  Relationship between isoelectric point of native and chemically modified insulin and liposomal fusion. , 1989, The Biochemical journal.

[55]  Michael Meot-Ner,et al.  The ionic hydrogen bond and ion solvation. 3. Bonds involving cyanides. Correlations with proton affinities , 1985 .