Upper crustal abundances of trace elements: A revision and update

Abstract We report new estimates of abundances of rarely analyzed elements (As, B, Be, Bi, Cd, Ge, In, Mo, Sb, Sn, Te, Tl, W) in the upper continental crust based on precise ICP-MS analyses of well-characterized upper crustal samples (shales, pelites, loess, graywackes, granitoids and their composites) from Australia, China, Europe, New Zealand and North American. Obtaining a better understanding of the upper crustal abundance and associated uncertainties of these elements is important in placing better constraints on bulk crust composition and, from that, whole Earth models of element cycling and crust generation. We also present revised abundance estimates of some more commonly analyzed trace elements (Li, Cr, Ni, and Tm) that vary by > 20% compared to previous estimates. The new estimates are mainly based on significant ( r 2  > 0.6) inter-element correlations observed in clastic sediments and sedimentary rocks, which yield upper continental crust elemental ratios that are used in conjunction with well-determined abundances for certain key elements to place constraints on the concentrations of the rarely analyzed elements. Using the well-established upper crustal abundances of La (31 ppm), Th (10.5 ppm), Al 2 O 3 (15.40%), K 2 O (2.80%) and Fe 2 O 3 (5.92%), these ratios lead to revised upper crustal abundances of B = 47 ppm, Bi = 0.23 ppm, Cr = 73 ppm, Li = 41 ppm, Ni = 34 ppm, Sb = 0.075, Te = 0.027 ppm, Tl = 0.53 ppm and W = 1.4 ppm. No significant correlations exist between Mo and Cd and other elements in the clastic sediments and sedimentary rocks, probably due to their enrichment in organic carbon. We thus calculate abundances of these elements by assuming the upper continental crust consists of 65% granitoid rocks plus 35% clastic sedimentary rocks. The validity of this approach is supported by the similarity of SiO 2 , Al 2 O 3 , La and Th abundances calculated in this way with their upper crustal abundances given in Rudnick and Gao [Rudnick, R., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 3. Elsevier–Pergamon, Oxford, pp. 1–64.]. The upper crustal abundances thus obtained are Mo = 0.6 ppm and Cd = 0.06 ppm. Our data also suggest a ∼ 20% increase of the Tm, Yb and Lu abundances reported in Rudnick and Gao [Rudnick, R., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 3. Elsevier–Pergamon, Oxford, pp. 1–64.].

[1]  G. M. Young,et al.  A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, western Scotland , 1997 .

[2]  K. Jochum,et al.  The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies , 1986 .

[3]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[4]  S. Taylor,et al.  Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations , 1990 .

[5]  Benren Zhang,et al.  Chemical composition of the continental crust as revealed by studies in East China , 1998 .

[6]  B. Kamber,et al.  A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia , 2005 .

[7]  R. Korotev,et al.  The 'North American shale composite' - Its compilation, major and trace element characteristics , 1984 .

[8]  G. Jenner,et al.  ICP-MS — A powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples , 1990 .

[9]  C. Hawkesworth,et al.  Evolution of the continental crust , 2006, Nature.

[10]  A. Dia,et al.  Loess geochemistry and its implications for particle origin and composition of the upper continental crust , 1998 .

[11]  Shenghong Hu,et al.  Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: a case study of methanol and acetone , 2004 .

[12]  R. Keays,et al.  Additional estimates of continental surface Precambrian shield composition in Canada , 1976 .

[13]  S. Taylor,et al.  Geochemistry of loess, continental crustal composition and crustal model ages , 1983 .

[14]  I. Roelandts,et al.  1987 Compilation of Elemental Concentration Data for USGS BHVO‐1, MAG‐1, QLO‐1, RGM‐1, SCo‐1, SDC‐1, SGR‐1 and STM‐1 , 1988 .

[15]  Shan Gao,et al.  Chemical composition of the continental crust in the Qinling Orogenic Belt and its adjacent North China and Yangtze cratons , 1992 .

[16]  W. Fahrig,et al.  Regional, lithological and temporal variation in the abundances of some trace elements in the Canadian Shield , 1973 .

[17]  Shan Gao,et al.  Average chemical compositions of post-Archean sedimentary and volcanic rocks from the Qinling Orogenic Belt and its adjacent North China and Yangtze Cratons , 1991 .

[18]  Shenghong Hu,et al.  Suppression of interferences for direct determination of arsenic in geological samples by inductively coupled plasma mass spectrometry , 2005 .

[19]  M. Meybeck,et al.  Elemental mass-balance of material carried by major world rivers , 1979 .

[20]  G. M. Young,et al.  Early Proterozoic climates and plate motions inferred from major element chemistry of lutites , 1982, Nature.

[21]  N. Rogers,et al.  Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform , 2004 .

[22]  V. M. Goldschmidt Grundlagen der quantitativen Geochemie , 1933 .

[23]  B. Dupré,et al.  Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? , 1999 .

[24]  G. Pattenden,et al.  An Estimate of the Chemical Composition of the Canadian Precambrian Shield , 1967 .

[25]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[26]  W. McDonough,et al.  Lithium isotopic composition and concentration of the upper continental crust , 2004 .

[27]  W. McDonough,et al.  Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[28]  Barth,et al.  Rutile-bearing refractory eclogites: missing link between continents and depleted mantle , 2000, Science.

[29]  Xiu‐Ping Yan,et al.  Trace element geochemistry of a thick till and clay-rich aquitard sequence, Saskatchewan, Canada , 2000 .

[30]  K. H. Wedepohl,et al.  Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb , 1980 .

[31]  J. Dawson,et al.  The Nature of the lower continental crust , 1986 .

[32]  W. Fahrig,et al.  Geochemical evolutionary trends of continental plates - A preliminary study of the Canadian Shield , 1971 .

[33]  Zhang Benren,et al.  Al2O3-REE correlations in sedimentary rocks. , 1991 .

[34]  John H. Jones,et al.  Origin of the earth , 1990 .

[35]  R. Rudnick Making continental crust , 1995, Nature.

[36]  B. Wilkinson,et al.  Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits , 2008 .

[37]  S. Gallet,et al.  Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka , 2001 .

[38]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[39]  D. Grégoire,et al.  Determination of trace elements in granites by inductively coupled plasma mass spectrometry. , 2000, Talanta.

[40]  Frank Wigglesworth Clarke,et al.  The composition of the Earth's crust , 1924 .

[41]  Scott M. McLennan,et al.  Relationships between the trace element composition of sedimentary rocks and upper continental crust , 2001 .

[42]  Y. Hattori,et al.  Re-os isotope systematics of the Taklimakan Desert sands, moraines and river sediments around the Taklimakan Desert, and of Tibetan soils , 2003 .

[43]  M. Bhatia Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation , 1984 .

[44]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[45]  S. Taylor,et al.  Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks , 1976 .

[46]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[47]  K. H. Wedepohl Handbook of Geochemistry , 1969 .

[48]  S. Eggins,et al.  A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation , 1997 .

[49]  D. K. McDaniel,et al.  Geochemical approaches to sedimentation, provenance, and tectonics , 1993 .

[50]  C. Hawkesworth,et al.  The differentiation and rates of generation of the continental crust , 2006 .

[51]  B. Kamber,et al.  Role of ‘hidden’ deeply subducted slabs in mantle depletion , 2000 .

[52]  K. Crook,et al.  Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins , 1986 .

[53]  K. H. Wedepohl The Composition of the Continental Crust , 1995 .

[54]  B. Peucker‐Ehrenbrink,et al.  Rhenium‐osmium isotope systematics and platinum group element concentrations: Loess and the upper continental crust , 2001 .

[55]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[56]  R. Rudnick,et al.  3.01 – Composition of the Continental Crust , 2003 .

[57]  A. Hofmann,et al.  Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth , 1992 .

[58]  W. McDonough,et al.  Tracking the budget of Nb and Ta in the continental crust , 2000 .

[59]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[60]  S. Taylor,et al.  Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust , 1980 .

[61]  S. Taylor,et al.  Geochemical application of spark-source mass spectrography , 1983 .

[62]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[63]  W. McDonough,et al.  The composition of the Earth , 1995 .

[64]  A. Hofmann,et al.  Tin in mantle-derived rocks: Constraints on Earth evolution , 1993 .

[65]  H. Newsom,et al.  Chemical fractionation during formation of the Earth's core and continental crust: clues from As, Sb, W, and Mo. , 1990 .

[66]  A. Hofmann,et al.  Making continental crust through slab melting: Constraints from niobium–tantalum fractionation in UHP metamorphic rutile , 2006 .

[67]  Michael Denis Higgins,et al.  Composition of the Canadian Precambrian shield and the continental crust of the earth , 1986, Geological Society, London, Special Publications.

[68]  D. Günther,et al.  Direct Determination of Tellurium in Geological Samples by Inductively Coupled Plasma Mass Spectrometry Using Ethanol as a Matrix Modifier , 2006, Applied spectroscopy.

[69]  H. Palme,et al.  Solar System Abundances of the Elements , 2003 .