Sea Ice Drift Tracking From Sequential SAR Images Using Accelerated-KAZE Features

In this paper, we propose a feature-tracking algorithm for sea ice drift retrieval from a pair of sequential satellite synthetic aperture radar (SAR) images. The method is based on feature tracking comprising feature detection, description, and matching steps. The approach exploits the benefits of nonlinear multiscale image representations using accelerated-KAZE (A-KAZE) features, a method that detects and describes image features in an anisotropic scale space. We evaluated several state-of-the-art feature-based algorithms, including A-KAZE, Scale Invariant Feature Transform (SIFT), and a very fast feature extractor that computes binary descriptors known as Oriented FAST and Rotated BRIEF (ORB) on dual polarized Sentinel-1A C-SAR extra wide swath mode data over the Arctic. The A-KAZE approach outperforms both ORB and SIFT up to an order of magnitude in ice drift. The experimental results showed high relevance of the proposed algorithm for retrieval of ice drift at subkilometre resolution from a pair of SAR images with 100-m pixel size. From this paper, we found that feature tracking using nonlinear scale-spaces is preferable due to its high efficiency against noise with respect to image features compared with other existing feature tracking alternatives that make use of Gaussian or linear scale spaces.

[1]  Stein Sandven,et al.  Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery , 2016 .

[2]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Gilbert V. April,et al.  Speckle statistics in four-look synthetic aperture radar imagery , 1991 .

[4]  J. Astola,et al.  Vector median filters , 1990, Proc. IEEE.

[5]  Leif E. B. Eriksson,et al.  Investigation of a Hybrid Algorithm for Sea Ice Drift Measurements Using Synthetic Aperture Radar Images , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Knut-Frode Dagestad,et al.  Nansat: a Scientist-Orientated Python Package for Geospatial Data Processing , 2016 .

[7]  John F. Vesecky,et al.  Object-oriented Feature-tracking Algorithms For SAR Image Of The Marginal Ice Zone , 1990 .

[8]  J. Karvonen,et al.  Operational SAR-based sea ice drift monitoring over the Baltic Sea , 2012 .

[9]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[10]  Yan Sun,et al.  Automatic ice motion retrieval from ERS-1 SAR images using the optical flow method , 1996 .

[11]  Sukyoung Lee,et al.  Attribution of the Recent Winter Sea Ice Decline over the Atlantic Sector of the Arctic Ocean , 2015 .

[12]  Henrik Aanæs,et al.  Interesting Interest Points , 2011, International Journal of Computer Vision.

[13]  Jingzhong Li,et al.  A triangulated spatial model for detection of spatial characteristics of GIS data , 2010, 2010 IEEE International Conference on Progress in Informatics and Computing.

[14]  Julie Delon,et al.  SAR-SIFT: A SIFT-Like Algorithm for SAR Images , 2015, IEEE Trans. Geosci. Remote. Sens..

[15]  M. Holland,et al.  Arctic sea ice decline: Faster than forecast , 2007 .

[16]  K. S. Pedersen,et al.  A Comparative Study of Interest Point Performance on a Unique Data Set , 2011 .

[17]  Muyin Wang,et al.  A sea ice free summer Arctic within 30 years? , 2009 .

[18]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[19]  Donald B. Percival,et al.  The decline in arctic sea‐ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data , 2008 .

[20]  Petra Heil,et al.  Semi-automated feature-tracking of East Antarctic sea ice from Envisat ASAR imagery , 2011 .

[21]  Ola M. Johannessen,et al.  Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications , 2006 .

[22]  Luc Van Gool,et al.  Efficient Non-Maximum Suppression , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[23]  Tony Lindeberg,et al.  Scale Selection Properties of Generalized Scale-Space Interest Point Detectors , 2012, Journal of Mathematical Imaging and Vision.

[24]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Hongjian You,et al.  BFSIFT: A Novel Method to Find Feature Matches for SAR Image Registration , 2012, IEEE Geoscience and Remote Sensing Letters.

[26]  Pierre Rampal,et al.  IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline , 2011 .

[27]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[28]  Ron Kwok,et al.  Tracking of Ice Edges and Ice Floes by Wavelet Analysis of SAR Images , 1997 .

[29]  Ron Kwok,et al.  Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions , 1998 .

[30]  John C. Curlander,et al.  ψ-s correlation and dynamic time warping: two methods for tracking ice floes in SAR images , 1991, IEEE Trans. Geosci. Remote. Sens..

[31]  Kurt Konolige,et al.  CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching , 2008, ECCV.

[32]  Juha Karvonen,et al.  SAR-based estimation of the baltic sea ice motion , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[35]  David G. Barber,et al.  Sea Ice Motion Tracking From Sequential Dual-Polarization RADARSAT-2 Images , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[37]  Edgar L. Andreas,et al.  Heat budget of snow-covered sea ice at North Pole 4 , 1999 .

[38]  Mark R. Drinkwater,et al.  Satellite Microwave Radar Observations of Antarctic Sea Ice. Chapter 8 , 1998 .

[39]  Adrien Bartoli,et al.  Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces , 2013, BMVC.

[40]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Marika M. Holland,et al.  How predictable is the timing of a summer ice‐free Arctic? , 2016 .

[42]  Ron Kwok,et al.  Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008 , 2009 .

[43]  Leif Toudal Pedersen,et al.  Sentinel-1 results: Sea ice operational monitoring , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[44]  M. Holland,et al.  Constraining projections of summer Arctic sea ice , 2012 .

[45]  Adrien Bartoli,et al.  KAZE Features , 2012, ECCV.

[46]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[47]  Jong-Sen Lee,et al.  Speckle Suppression and Analysis for Synthetic Aperture Radar Images , 1985, Optics & Photonics.

[48]  D. Rothrock,et al.  Sea Ice Tracking by Nested Correlations , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Ross M. McConnell,et al.  An ice-motion tracking system at the Alaska SAR facility , 1990 .

[50]  Ian Simmonds,et al.  Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979-2013 , 2015, Annals of Glaciology.

[51]  Joachim Weickert,et al.  From Box Filtering to Fast Explicit Diffusion , 2010, DAGM-Symposium.

[52]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[53]  Stephen E. L. Howell,et al.  Regional variability of a projected sea ice‐free Arctic during the summer months , 2016 .

[54]  Joachim Weickert,et al.  Cyclic Schemes for PDE-Based Image Analysis , 2016, International Journal of Computer Vision.

[55]  J. C. Comiso,et al.  Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3 , 2017 .

[56]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[57]  R. Bracewell,et al.  Observation of sea-ice dynamics using synthetic aperture radar images: automated analysis , 1988 .