Stability Region Analysis Using Polynomial and Composite Polynomial Lyapunov Functions and Sum-of-Squares Programming

We propose using (bilinear) sum-of-squares programming for obtaining inner bounds of RoAs for dynamical systems with polynomial vector fields. We search for polynomial as well as composite Lyapunov functions comprised of pointwise maximums of polynomial functions. Results for several examples from the literature are presented using the proposed methods and the PENBMI solver.

[1]  N. Bose,et al.  A quadratic form representation of polynomials of several variables and its applications , 1968 .

[2]  Verne C. Fryklund,et al.  What systems analysis? , 1981, Nature.

[3]  E. Davison,et al.  A computational method for determining quadratic lyapunov functions for non-linear systems , 1971 .

[4]  R. Brockett Lie Algebras and Lie Groups in Control Theory , 1973 .

[5]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[6]  A. I. Barkin,et al.  Method of power transformations for analysis of stability of nonlinear control systems , 1983 .

[7]  A. Vicino,et al.  On the estimation of asymptotic stability regions: State of the art and new proposals , 1985 .

[8]  Mathukumalli Vidyasagar,et al.  Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems , 1981, Autom..

[9]  M-F Roy,et al.  Géométrie algébrique réelle , 1987 .

[10]  Felix F. Wu,et al.  Stability regions of nonlinear autonomous dynamical systems , 1988 .

[11]  J. Thorp,et al.  Stability regions of nonlinear dynamical systems: a constructive methodology , 1989 .

[12]  C. Cassandras,et al.  The effect of model uncertainty on some optimal routing problems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[13]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[14]  A. L. Zelentsovsky Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems , 1994, IEEE Trans. Autom. Control..

[15]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[16]  A. Levin An analytical method of estimating the domain of attraction for polynomial differential equations , 1994, IEEE Trans. Autom. Control..

[17]  M. Fu,et al.  Piecewise Lyapunov functions for robust stability of linear time-varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[18]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[19]  M. Fu,et al.  Piecewise Lyapunov functions for robust stability of linear time-varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  T. Vincent,et al.  Nonlinear and Optimal Control Systems , 1997 .

[21]  Stephen P. Boyd,et al.  Quadratic stabilization and control of piecewise-linear systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[22]  Natan Peterfreund,et al.  Convergence analysis of nonlinear dynamical systems by nested Lyapunov functions , 1998, IEEE Trans. Autom. Control..

[23]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[24]  Stephen P. Boyd,et al.  A path-following method for solving BMI problems in control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[25]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[26]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[27]  E. Cruck,et al.  Estimation of Basins of Attraction for Uncertain Systems with Affine and Lipschitz Dynamics , 2001 .

[28]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[29]  Peter J Seiler,et al.  SOSTOOLS: Sum of squares optimization toolbox for MATLAB , 2002 .

[30]  Christos G. Cassandras,et al.  Perturbation analysis for online control and optimization of stochastic fluid models , 2002, IEEE Trans. Autom. Control..

[31]  Tingshu Hu,et al.  Composite quadratic Lyapunov functions for constrained control systems , 2003, IEEE Trans. Autom. Control..

[32]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[33]  Z. Jarvis-Wloszek,et al.  Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization , 2003 .

[34]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[35]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[36]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[37]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[38]  A. Papachristodoulou Scalable analysis of nonlinear systems using convex optimization , 2005 .

[39]  P. Peres,et al.  Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .

[40]  S. Lall,et al.  Polynomial level-set methods for nonlinear dynamical systems analysis , 2005 .

[41]  A. Garulli,et al.  LMI‐based computation of optimal quadratic Lyapunov functions for odd polynomial systems , 2005 .

[42]  J. Doyle,et al.  Optimization-based methods for nonlinear and hybrid systems verification , 2005 .

[43]  C. Hol Structured controller synthesis for mechanical servo-systems: Algorithms, relaxations and optimality certificates , 2006 .