Synergy of tensile strength-ductility in IN718/CoCrFeMnNi/IN718 multi-material processed by powder high-pressure torsion and annealing

[1]  Rui Yang,et al.  Effect of powder size segregation on the mechanical properties of hot isostatic pressing Inconel 718 alloys , 2022, Journal of Materials Research and Technology.

[2]  Hyoung-Seop Kim,et al.  Tailoring microstructure with spatial heterogeneity in CoCrFeMnNi high-entropy alloy via laser surface relaxation , 2022, Materials Science and Engineering: A.

[3]  Hyoung-Seop Kim,et al.  Multi-scale investigation on local strain and damage evolution of Al1050/steel/Al1050 clad sheet , 2022, Journal of Materials Research and Technology.

[4]  Hyoung-Seop Kim,et al.  A New Digital Image Correlation Method for Measuring Wide Strain Range True Stress–Strain Curve of Clad Materials , 2022, Metals and Materials International.

[5]  K. Prashanth,et al.  Additive Manufacturing of CoCrFeMnNi High‐Entropy Alloy/AISI 316L Stainless Steel Bimetallic Structures , 2022, Advanced Engineering Materials.

[6]  M. R. Toroghinejad,et al.  Grain boundary engineering in roll-bonded copper to overcome the strength-ductility dilemma , 2022, Journal of Materials Research and Technology.

[7]  G. Nolze,et al.  Microstructure Evolution in Inconel 718 Produced by Powder Bed Fusion Additive Manufacturing , 2022, Journal of Manufacturing and Materials Processing.

[8]  Hyoung-Seop Kim,et al.  Fabrication of multi-gradient heterostructured CoCrFeMnNi high-entropy alloy using laser metal deposition , 2022, Materials Science and Engineering: A.

[9]  Jinyu Fu,et al.  Effect of annealing and cold rolling on interface microstructure and properties of Ti/Al/Cu clad sheet fabricated by horizontal twin-roll casting , 2021, Journal of Materials Research and Technology.

[10]  Hyoung-Seop Kim,et al.  TiC-reinforced CoCrFeMnNi composite processed by cold-consolidation and subsequent annealing , 2021 .

[11]  Yue Zhang,et al.  Characterization of precipitation in gradient Inconel 718 superalloy , 2021, Materials Science and Engineering: A.

[12]  K. Nie,et al.  Synergistic Enhancement of the Strength-Ductility for Stir Casting SiCp/2024Al Composites by Two-Step Deformation , 2021, Metals and Materials International.

[13]  Huajian Gao,et al.  Towards understanding the structure–property relationships of heterogeneous-structured materials , 2020 .

[14]  Hyoung-Seop Kim,et al.  A Powder-Metallurgy-Based Fabrication Route Towards Achieving High Tensile Strength with Ultra-High Ductility in High-Entropy Alloy , 2020, Scripta Materialia.

[15]  Guangming Xu,et al.  Interfacial Reaction in Twin-Roll Cast AA1100/409L Clad Sheet During Different Sequence of Cold Rolling and Annealing , 2020, Metals and Materials International.

[16]  W. Ding,et al.  Development of Al-TiCN nanocomposites via ultrasonic assisted casting route. , 2019, Ultrasonics sonochemistry.

[17]  J. Robson,et al.  On the interaction of precipitates and tensile twins in magnesium alloys , 2019, Acta Materialia.

[18]  Gaoyan Zhong,et al.  Interfacial characterization and mechanical properties of 316L stainless steel/inconel 718 manufactured by selective laser melting , 2019, Materials Science and Engineering: A.

[19]  Yanfei Gao,et al.  Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae , 2019, Nature Communications.

[20]  Xiaozhou Liao,et al.  Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting , 2018, Scripta Materialia.

[21]  A. Bandyopadhyay,et al.  Additive manufacturing of multi-material structures , 2018, Materials Science and Engineering: R: Reports.

[22]  Z. Zhang,et al.  Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement , 2018 .

[23]  E. George,et al.  Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy , 2018 .

[24]  J. Kwon,et al.  Intermediate strain rate deformation behavior of a CoCrFeMnNi high-entropy alloy , 2017 .

[25]  D. Masaylo,et al.  Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting , 2017 .

[26]  Sunghak Lee,et al.  Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy , 2017 .

[27]  Xiaolei Wu,et al.  Heterogeneous materials: a new class of materials with unprecedented mechanical properties , 2017, Heterostructured Materials.

[28]  B. Klöden,et al.  High-entropy alloy CoCrFeMnNi produced by powder metallurgy , 2017 .

[29]  Hidemi Kato,et al.  Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering , 2017 .

[30]  Xin Lin,et al.  The tensile deformation behavior of laser repaired Inconel 718 with a non-uniform microstructure , 2017 .

[31]  F. Medina,et al.  Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process , 2017 .

[32]  M. Gao,et al.  Microstructure and Mechanical Behavior of High-Entropy Alloys , 2015, Journal of Materials Engineering and Performance.

[33]  U. Glatzel,et al.  Mechanical and Microstructural Investigation of Nickel‐Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM) , 2015 .

[34]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[35]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[36]  J. Shin,et al.  Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes , 2011 .

[37]  Magdi Naim Azer,et al.  Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718 , 2009 .

[38]  Kotobu Nagai,et al.  Progress in cold roll bonding of metals , 2008, Science and technology of advanced materials.

[39]  A. Karimi Taheri,et al.  Bond strength and formability of an aluminum-clad steel sheet , 2003 .

[40]  G. Appa Rao,et al.  Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718 , 2003 .

[41]  Thak Sang Byun,et al.  Tensile properties of Inconel 718 after low temperature neutron irradiation , 2003 .

[42]  T. Masui,et al.  Development of Nonferrous Clad Plate and Sheet by Warm Rolling with Different Temperature of Materials. , 1991 .

[43]  A. Pineau,et al.  Low cycle fatigue behavior of inconel 718 at 298 K and 823 K , 1977 .

[44]  Mohammad Saad,et al.  Recent Advancements in Powder Metallurgy: A Review , 2018 .

[45]  Yong Liu,et al.  Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder , 2016 .

[46]  P. Ramakrishnan,et al.  Automotive applications of powder metallurgy , 2013 .

[47]  D. Imbault,et al.  Fabrication of bimaterial components by conventional powder metallurgy , 2010 .

[48]  M. Ashby,et al.  The role of geometrically necessary dislocations in giving material strengthening , 2003 .

[49]  Huajian Gao,et al.  Geometrically necessary dislocation and size-dependent plasticity , 2003 .

[50]  A. Mortensen,et al.  Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues , 2003 .