Construction of multivariate surrogate sets from nonlinear data using the wavelet transform

[1]  Michael Breakspear,et al.  An improved algorithm for the detection of dynamical interdependence in bivariate time-series , 2003, Biological Cybernetics.

[2]  C. Stam,et al.  Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets , 2002 .

[3]  John R. Terry,et al.  Topographic Organization of Nonlinear Interdependence in Multichannel Human EEG , 2002, NeuroImage.

[4]  Karl J. Friston,et al.  Bayesian Estimation of Dynamical Systems: An Application to fMRI , 2002, NeuroImage.

[5]  John R. Terry,et al.  Detection and description of non-linear interdependence in normal multichannel human EEG data , 2002, Clinical Neurophysiology.

[6]  M. Breakspear Nonlinear phase desynchronization in human electroencephalographic data , 2002, Human brain mapping.

[7]  Shuguang Guan,et al.  A wavelet method for the characterization of spatiotemporal patterns , 2002 .

[8]  Yuko Mizuno-Matsumoto,et al.  Wavelet-crosscorrelation analysis can help predict whether bursts of pulse stimulation will terminate afterdischarges , 2002, Clinical Neurophysiology.

[9]  Karl J. Friston,et al.  Nonlinear Coupling between Evoked rCBF and BOLD Signals: A Simulation Study of Hemodynamic Responses , 2001, NeuroImage.

[10]  M. Brammer,et al.  Multiresolution analysis in fMRI: Sensitivity and specificity in the detection of brain activation , 2001, Human brain mapping.

[11]  Keith R. Thulborn,et al.  Specified-resolution wavelet analysis of activation patterns from BOLD contrast fMRI , 2001, IEEE Transactions on Medical Imaging.

[12]  T A Carpenter,et al.  Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains , 2001, Human brain mapping.

[13]  P. Robinson,et al.  Prediction of electroencephalographic spectra from neurophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Michio Yamada,et al.  Visualization of Correlation Cascade in Spatiotemporal Chaos using Wavelets , 2000, Int. J. Bifurc. Chaos.

[15]  Karl J. Friston The labile brain. I. Neuronal transients and nonlinear coupling. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  F. L. D. Silva,et al.  Dynamics of the human alpha rhythm: evidence for non-linearity? , 1999, Clinical Neurophysiology.

[17]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[18]  P. Grassberger,et al.  A robust method for detecting interdependences: application to intracranially recorded EEG , 1999, chao-dyn/9907013.

[19]  Michael Unser,et al.  Statistical analysis of functional MRI data in the wavelet domain , 1998, IEEE Transactions on Medical Imaging.

[20]  Thomas Schreiber,et al.  Constrained Randomization of Time Series Data , 1998, chao-dyn/9909042.

[21]  R. Burke,et al.  Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Milan Palus,et al.  Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos , 1996, Biological Cybernetics.

[23]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[24]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[25]  W. Pritchard,et al.  Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. , 1995, Psychophysiology.

[26]  C. J. Stam,et al.  Investigation of nonlinear structure in multichannel EEG , 1995 .

[27]  M Unser,et al.  Fast wavelet transformation of EEG. , 1994, Electroencephalography and clinical neurophysiology.

[28]  Theiler,et al.  Generating surrogate data for time series with several simultaneously measured variables. , 1994, Physical review letters.

[29]  Albano,et al.  Filtered noise can mimic low-dimensional chaotic attractors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[31]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[32]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[33]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[34]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals; dependence on state and brain site. , 1991, Electroencephalography and clinical neurophysiology.

[35]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[36]  D. Ruelle,et al.  The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[38]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[39]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. III Mapping Model for Continuous System , 1984 .

[40]  S. Longhi Spiral waves in optical parametric oscillators , 2001 .

[41]  S. Mallat A wavelet tour of signal processing , 1998 .

[42]  M. Brammer,et al.  Multidimensional wavelet analysis of functional magnetic resonance images , 1998, Human brain mapping.

[43]  David Ruelle,et al.  Deterministic chaos: the science and the fiction , 1995 .

[44]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals , 1995 .