Excellent codes from modular curves

We introduce a new construction of error-correcting codes from algebraic curves over finite fields. Modular curves of genus g\ra\infty over a field of size q_0^2 yield nonlinear codes more efficient than the linear Goppa codes obtained from the same curves. These new codes now have the highest asymptotic transmission rates known for certain ranges of alphabet size and error rate. Both the theory and possible practical use of these new record codes require the development of new tools. On the theoretical side, establishing the transmission rate depends on an error estimate for a theorem of Schanuel applied to the function field of an asymptotically optimal curve. On the computational side, actual use of the codes will hinge on the solution of new problems in the computational algebraic geometry of curves.

[1]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[2]  Noam D. Elkies,et al.  Shimura Curve Computations , 1998, ANTS.

[3]  S. Vladut,et al.  Number of points of an algebraic curve , 1983 .

[4]  Noam D. Elkies,et al.  Explicit Modular Towers , 2001, math/0103107.

[5]  Stephen Ascanio DiPippo Spaces of rational functions on curves over finite fields , 1990 .

[6]  H. Stichtenoth,et al.  Asymptotically good towers of function fields over finite fields , 1996 .

[7]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[8]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[9]  Amin Shokrollahi,et al.  List Decoding of Algebraic-Geometric Codes , 1999, IEEE Trans. Inf. Theory.

[10]  Daqing Wan,et al.  Heights and Zeta Functions in Function Fields , 1992 .

[11]  Arnaldo Garcia,et al.  On Towers and Composita of Towers of Function Fields over Finite Fields , 1997 .

[12]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[13]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[14]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[15]  Y. Ihara,et al.  Some remarks on the number of rational points of algebratic curves over finite fields , 1982 .

[16]  Jean-Pierre Serre,et al.  Lectures On The Mordell-Weil Theorem , 1989 .

[17]  N. Elkies Explicit Towers of Drinfeld Modular Curves , 2000, math/0005140.

[18]  Stephen Hoel Schanuel Heights in number fields , 1979 .