New Upper Bounds for MaxSat

Given a boolean formula F in conjunctive normal form and an integer k, is there a truth assignment satisfying at least k clauses? This is the decision version of the Maximum Satisfiability (MaxSat) problem we study in this paper. We improve upper bounds on the worst case running time for MaxSat. First, Cai and Chen showed that MaxSat can be solved in time |F|2O(k) when the clause size is bounded by a constant. Imposing no restrictions on clause size, Mahajan and Raman and, independently, Dantsin et al. improved this to O(|F|Φk), where Φ ≅ 1:6181 is the golden ratio. We present an algorithm running in time O(|F|1:3995k). The result extends to finding an optimal assignment and has several applications, in particular, for parameterized complexity and approximation algorithms. Moreover, if F has K clauses, we can find an optimal assignment in O(|F|1:3972K) steps and in O(1:1279|F|) steps, respectively. These are the fastest algorithm in the number of clauses and the length of the formula, respectively.

[1]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[2]  Brian Borchers,et al.  A Two-Phase Exact Algorithm for MAX-SAT and Weighted MAX-SAT Problems , 1998, J. Comb. Optim..

[3]  Eugene C. Freuder,et al.  Comparative studies of constraint satisfaction and Davis-Putnam algorithms for maximum satisfiability problems , 1993, Cliques, Coloring, and Satisfiability.

[4]  Roberto Battiti,et al.  Reactive search, a history-sensitive heuristic for MAX-SAT , 1997, JEAL.

[5]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[6]  Richard J. Wallace,et al.  Enhancing Maximum Satisfiablility Algorithms with Pure Literal Strategies , 1996, Canadian Conference on AI.

[7]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[8]  Rolf Niedermeier,et al.  Upper Bounds for Vertex Cover Further Improved , 1999, STACS.

[9]  Oliver Kullmann,et al.  Deciding propositional tautologies: Algorithms and their complexity , 1997 .

[10]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[11]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  David Eppstein,et al.  3-coloring in time 0(1.3446/sup n/): a no-MIS algorithm , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[14]  Ramesh Hariharan,et al.  Derandomizing semidefinite programming based approximation algorithms , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[15]  David Eppstein,et al.  3-Coloring in time O(1.3446n): A no-MIS Algorithm , 1995, Electron. Colloquium Comput. Complex..

[16]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[17]  Mihalis Yannakakis,et al.  On the approximation of maximum satisfiability , 1992, SODA '92.

[18]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[19]  Takao Asano,et al.  Approximation algorithms for MAX SAT: Yannakakis vs. Goemans-Williamson , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[20]  Michael R. Fellows,et al.  An Improved Fixed-Parameter Algorithm for Vertex Cover , 1998, Inf. Process. Lett..

[21]  Pierluigi Crescenzi,et al.  Approximation on the Web: A Compendium of NP Optimization Problems , 1997, RANDOM.

[22]  Pavel Pudlák,et al.  Satisfiability - Algorithms and Logic , 1998, MFCS.

[23]  Toshihide Ibaraki,et al.  Efficient 2 and 3-Flip Neighborhood Search Algorithms for the MAX SAT , 1998, COCOON.

[24]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[25]  Liming Cai,et al.  On Fixed-Parameter Tractability and Approximability of NP Optimization Problems , 1997, J. Comput. Syst. Sci..

[26]  Roberto Battiti,et al.  Reactive Search, a history-based heuristic for MAX-SAT , 1996 .

[27]  Rolf Niedermeier,et al.  Some Prospects for Efficient Fixed Parameter Algorithms , 1998, SOFSEM.

[28]  Boris Konev,et al.  APPROXIMATION ALGORITHMS FOR MAX SAT: A BETTER PERFORMANCE RATIO AT THE COST OF A LONGER RUNNING TIME , 1998 .

[29]  Pierluigi Crescenzi,et al.  A compendium of NP optimization problems , 1994, WWW Spring 1994.

[30]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..

[31]  Wenhui Zhang,et al.  Number of Models and Satisfiability of Sets of Clauses , 1996, Theor. Comput. Sci..

[32]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[33]  Michael R. Fellows,et al.  Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.

[34]  Luca Trevisan,et al.  Gadgets, Approximation, and Linear Programming , 2000, SIAM J. Comput..

[35]  Edward A. Hirsch,et al.  Two new upper bounds for SAT , 1998, SODA '98.

[36]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[37]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[38]  Roberto Battiti,et al.  Approximate Algorithms and Heuristics for MAX-SAT , 1998 .

[39]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[40]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .