The Eulerian distribution on centrosymmetric involutions
暂无分享,去创建一个
[1] David Thomas,et al. The Art in Computer Programming , 2001 .
[2] Jiang Zeng,et al. The Eulerian distribution on involutions is indeed unimodal , 2006, J. Comb. Theory, Ser. A.
[3] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[4] Ira M. Gessel,et al. On the descent numbers and major indices for the hyperoctahedral group , 2007, Adv. Appl. Math..
[5] Christian Krattenthaler. Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes , 2006, Adv. Appl. Math..
[6] Marcel P. Schützenberger. Quelques remarques sur une Construction de Schensted. , 1963 .
[7] Marilena Barnabei,et al. The descent statistic on involutions is not log-concave , 2007, Eur. J. Comb..
[8] R. W. Robinson. Counting arrangements of bishops , 1976 .
[9] William H. Burge,et al. Four Correspondences Between Graphs and Generalized Young Tableaux , 1974, J. Comb. Theory A.
[10] J. Karhumäki,et al. ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .
[11] John R. Stembridge,et al. Canonical bases and self-evacuating tableaux , 1996 .
[12] Donald E. Knuth,et al. The art of computer programming: sorting and searching (volume 3) , 1973 .
[13] Ira M. Gessel,et al. Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.
[14] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[15] Yuval Roichman,et al. Descent Numbers and Major Indices for the Hyperoctahedral Group , 2000, Adv. Appl. Math..