The Eulerian distribution on centrosymmetric involutions

We present an extensive study of the Eulerian distribution on the set of centrosymmetric involutions, namely, involutions in S(n) satisfying the property sigma(i) + sigma(n + 1 - i) = n + 1 for every i = 1 ... n. We find some combinatorial properties for the generating polynomial of such distribution, together with an explicit formula for its coefficients. Afterwards, we carry out an analogous study for the subset of centrosymmetric involutions without fixed points.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Jiang Zeng,et al.  The Eulerian distribution on involutions is indeed unimodal , 2006, J. Comb. Theory, Ser. A.

[3]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[4]  Ira M. Gessel,et al.  On the descent numbers and major indices for the hyperoctahedral group , 2007, Adv. Appl. Math..

[5]  Christian Krattenthaler Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes , 2006, Adv. Appl. Math..

[6]  Marcel P. Schützenberger Quelques remarques sur une Construction de Schensted. , 1963 .

[7]  Marilena Barnabei,et al.  The descent statistic on involutions is not log-concave , 2007, Eur. J. Comb..

[8]  R. W. Robinson Counting arrangements of bishops , 1976 .

[9]  William H. Burge,et al.  Four Correspondences Between Graphs and Generalized Young Tableaux , 1974, J. Comb. Theory A.

[10]  J. Karhumäki,et al.  ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .

[11]  John R. Stembridge,et al.  Canonical bases and self-evacuating tableaux , 1996 .

[12]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[13]  Ira M. Gessel,et al.  Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.

[14]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[15]  Yuval Roichman,et al.  Descent Numbers and Major Indices for the Hyperoctahedral Group , 2000, Adv. Appl. Math..