Optical high-precision three-dimensional vision-based quality control of manufactured parts by use of synthetic images and knowledge for image-data evaluation and interpretation.

Vision-based evaluation of industrial workpieces can make efficient use of knowledge-based approaches, in particular for quality control, inspection, and accurate-measurement tasks. A possible approach is to compare real images with conceptual (synthetic) images generated by use of standard computer-aided design models, which include tolerances and take the application-specific conditions into account (e.g., the measured-calibration data). Integrated in (industrial) real-life environments, our evaluation methods have been successfully applied to on-line inspection of manufactured parts including sculptured surfaces, using structured light techniques for the reconstruction of three-dimensional shapes. Accuracies in the range 15-50 microm are routinely achieved by use of either isolated images or spatially registered image sequences.

[1]  Aristides A. G. Requicha,et al.  Toward a Theory of Geometric Tolerancing , 1983 .

[2]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[3]  Martin D. Levine,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[5]  Utpal Roy,et al.  Integrated CAD frameworks: tolerance representation scheme in a solid model , 1993 .

[6]  Anil K. Jain,et al.  A system for 3D CAD-based inspection using range images , 1995, Pattern Recognit..

[7]  Richard A. Volz,et al.  Estimating 3-D location parameters using dual number quaternions , 1991, CVGIP Image Underst..

[8]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[9]  Maria Petrou,et al.  Automatic registration of ceramic tiles for the purpose of fault detection , 2000, Machine Vision and Applications.

[10]  Glenn H. Tarbox,et al.  IVIS: An Integrated Volumetric Inspection System , 1995, Comput. Vis. Image Underst..

[11]  Robert Bergevin,et al.  Towards a General Multi-View Registration Technique , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Joshua U. Turner,et al.  Representational primitives for geometric tolerancing , 1993, Comput. Aided Des..

[13]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Jake K. Aggarwal,et al.  Model-based object recognition in dense-range images—a review , 1993, CSUR.

[15]  Louis Rivest,et al.  Tolerancing a solid model with a kinematic formulation , 1994, Comput. Aided Des..

[16]  Takeo Kanade,et al.  Region segmentation: Signal vs semantics , 1980 .

[17]  Gang Wang,et al.  Registration and Integration of Multiple Object Views for 3D Model Construction , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[19]  Anil K. Jain,et al.  A Survey of Automated Visual Inspection , 1995, Comput. Vis. Image Underst..

[20]  N. P. Juster,et al.  Modelling and representation of dimensions and tolerances: a survey , 1992, Comput. Aided Des..

[21]  R. Bergevin,et al.  Registering range views of multipart objects , 1995 .

[22]  Alan Fleming,et al.  Geometric Relationships Between Toleranced Features , 1988, Artif. Intell..

[23]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..