Purcell factor of spherical Mie resonators

We present a modal approach to compute the Purcell factor in Mie resonators exhibiting both electric and magnetic resonances. The analytic expressions of the normal modes are used to calculate the effective volumes. We show that important features of the effective volume can be predicted thanks to the translation-addition coefficients of a displaced dipole. Using our formalism, it is easy to see that, in general, the Purcell factor of Mie resonators is not dominated by a single mode, but rather by a large superposition. Finally we consider a silicon resonator homogeneously doped with electric dipolar emitters, and we show that the average electric Purcell factor dominates over the magnetic one.