An arbitrary-spectrum spatial visual stimulator for vision research

Visual neuroscientists require accurate control of visual stimulation. However, few stimulator solutions simultaneously offer high spatio-temporal resolution and free control over the spectra of the light sources, because they rely on off-the-shelf technology developed for human trichromatic vision. Importantly, consumer displays fail to drive UV-shifted short wavelength-sensitive photoreceptors, which strongly contribute to visual behaviour in many animals, including mice, zebrafish and fruit flies. Moreover, many non-mammalian species feature more than three spectral photoreceptor types. Here, we present a flexible, spatial visual stimulator with up to 6 arbitrary spectrum chromatic channels. It combines a standard digital light processing engine with open source hard- and software that can be easily adapted to the experimentalist’s needs. We demonstrate the capability of this general visual stimulator experimentally in the in vitro mouse retinal whole-mount and the in vivo zebrafish. Hereby, we intend starting a community effort of sharing and developing a common stimulator design.

[1]  G. H. Jacobs,et al.  Regional variations in the relative sensitivity to UV light in the mouse retina , 1995, Visual Neuroscience.

[2]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[3]  M. Dimitrova,et al.  Ultra-Rapid Vision in Birds , 2016, PloS one.

[4]  Christa Neumeyer,et al.  Tetrachromatic color vision in goldfish: evidence from color mixture experiments , 1992, Journal of Comparative Physiology A.

[5]  Leon Lagnado,et al.  A genetically-encoded reporter of synaptic activity in vivo , 2009, Nature Methods.

[6]  L. Lagnado,et al.  Crossover Inhibition Generates Sustained Visual Responses in the Inner Retina , 2016, Neuron.

[7]  J. Mollon,et al.  Human visual pigments: microspectrophotometric results from the eyes of seven persons , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  H. Spekreijse,et al.  The “silent substitution” method in visual research , 1982, Vision Research.

[9]  F. Engert,et al.  Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish , 2016, Front. Behav. Neurosci..

[10]  P. Rakić,et al.  Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. M. Fadool,et al.  Studying rod photoreceptor development in zebrafish , 2005, Physiology & Behavior.

[12]  Edward N. Pugh,et al.  Physiological Features of the S- and M-cone Photoreceptors of Wild-type Mice from Single-cell Recordings , 2006, The Journal of general physiology.

[13]  C. Hawryshyn,et al.  Polarized-light sensitivity in rainbow trout (Oncorhynchus mykiss): characterization from multi-unit responses in the optic nerve , 1993, Journal of Comparative Physiology A.

[14]  D. Reiff,et al.  Color Processing in the Early Visual System of Drosophila , 2018, Cell.

[15]  T. Branchek,et al.  The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure , 1984, The Journal of comparative neurology.

[16]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[17]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[18]  J. Dowling,et al.  Bipolar cell–photoreceptor connectivity in the zebrafish (Danio rerio) retina , 2012, The Journal of comparative neurology.

[19]  Tobias Breuninger,et al.  Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina , 2009, Pflügers Archiv - European Journal of Physiology.

[20]  V. Enzmann,et al.  Photopic and scotopic spatiotemporal tuning of adult zebrafish vision , 2015, Front. Syst. Neurosci..

[21]  G. Goodhill,et al.  Faculty Opinions recommendation of Spontaneous behaviors drive multidimensional, brain-wide activity. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[22]  Thomas Euler,et al.  Light-Driven Calcium Signals in Mouse Cone Photoreceptors , 2012, The Journal of Neuroscience.

[23]  L. Marcu,et al.  Fiber-based platform for synchronous imaging of endogenous and exogenous fluorescence of biological tissue. , 2019, Optics letters.

[24]  Aristides B. Arrenberg,et al.  Selective processing of all rotational and translational optic flow directions in the zebrafish pretectum and tectum , 2019, BMC Biology.

[25]  Satoru Kawamura,et al.  Vertebrate Photoreceptors , 2014, Springer Japan.

[26]  M. Antoch,et al.  The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.

[27]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[28]  S. Hecht,et al.  INTERMITTENT STIMULATION BY LIGHT : III. THE RELATION BETWEEN INTENSITY AND CRITICAL FUSION FREQUENCY FOR DIFFERENT RETINAL LOCATIONS. , 1933 .

[29]  Leon Lagnado,et al.  A Retinal Circuit Generating a Dynamic Predictive Code for Oriented Features , 2018, Neuron.

[30]  Christof Koch,et al.  Spatial Organization of Chromatic Pathways in the Mouse Dorsal Lateral Geniculate Nucleus , 2017, The Journal of Neuroscience.

[31]  F S Werblin,et al.  Transmission along and between rods in the tiger salamander retina. , 1978, The Journal of physiology.

[32]  Thomas Euler,et al.  Differential Regulation of Cone Calcium Signals by Different Horizontal Cell Feedback Mechanisms in the Mouse Retina , 2014, The Journal of Neuroscience.

[33]  Tsai-Wen Chen,et al.  Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex , 2015, Scientific Reports.

[34]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[35]  Sönke Johnsen,et al.  Ultraviolet absorption in transparent zooplankton and its implications for depth distribution and visual predation , 2001 .

[36]  P. Olsson,et al.  Generating Transparent Zebrafish: A Refined Method to Improve Detection of Gene Expression During Embryonic Development , 2001, Marine Biotechnology.

[37]  Thomas Euler,et al.  A Tale of Two Retinal Domains: Near-Optimal Sampling of Achromatic Contrasts in Natural Scenes through Asymmetric Photoreceptor Distribution , 2013, Neuron.

[38]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[39]  Philipp Berens,et al.  Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes , 2018, Current Biology.

[40]  Á. Szél,et al.  Two different visual pigments in one retinal cone cell , 1994, Neuron.

[41]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[42]  P. Holland,et al.  Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution , 2016, Genome biology and evolution.

[43]  Blue through UV polarization sensitivities in insects , 1994, Journal of Comparative Physiology A.

[44]  H. Wässle,et al.  The Primordial, Blue-Cone Color System of the Mouse Retina , 2005, The Journal of Neuroscience.

[45]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[46]  T. Branchek The development of photoreceptors in the zebrafish, Brachydanio rerio. II. Function , 1984, The Journal of comparative neurology.

[47]  Philipp Berens,et al.  Die Retina im Rausch der Kanäle , 2017, Klinische Monatsblätter für Augenheilkunde.

[48]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brainwide activity , 2019, Science.

[49]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brain-wide activity , 2018, bioRxiv.

[50]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[51]  Oliver Biehlmaier,et al.  Visual acuity in larval zebrafish: behavior and histology , 2010, Frontiers in Zoology.

[52]  Jim Haseloff,et al.  μCube: A Framework for 3D Printable Optomechanics , 2018 .

[53]  G. H. Jacobs Primate color vision: A comparative perspective , 2008, Visual Neuroscience.

[54]  T W Cronin,et al.  Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[55]  R. C. Miall,et al.  The flicker fusion frequencies of six laboratory insects, and the response of the compound eye to mains fluorescent ‘ripple’ , 1978 .

[56]  Daniel Osorio,et al.  Evolution and selection of trichromatic vision in primates , 2003 .

[57]  Michael J. Bok,et al.  Photoreception and vision in the ultraviolet , 2016, Journal of Experimental Biology.

[58]  J. Marshall,et al.  Unconventional colour vision , 2014, Current Biology.

[59]  Shanshan Han,et al.  Optomechanical Time-Gated Fluorescence Imaging Using Long-Lived Silicon Quantum Dot Nanoparticles. , 2019, Analytical chemistry.

[60]  Katrin Franke,et al.  Bayesian Hypothesis Testing And Experimental Design For Two-Photon Imaging Data , 2019, PLoS Comput. Biol..

[61]  R. Wehner Polarization vision--a uniform sensory capacity? , 2001, The Journal of experimental biology.

[62]  Philipp Berens,et al.  Cellular and molecular mechanisms of photoreceptor tuning for prey capture in larval zebrafish , 2019, bioRxiv.

[63]  Shoji Kawamura,et al.  Gene duplication and spectral diversification of cone visual pigments of zebrafish. , 2003, Genetics.

[64]  Thomas Euler,et al.  Studying a Light Sensor with Light: Multiphoton Imaging in the Retina , 2019 .

[65]  Katrin Franke,et al.  Bayesian hypothesis testing and experimental design for two-photon imaging data , 2018, bioRxiv.

[66]  I. Novales Flamarique Opsin switch reveals function of the ultraviolet cone in fish foraging , 2013, Proceedings of the Royal Society B: Biological Sciences.

[67]  M. Häusser,et al.  Cellular mechanisms of spatial navigation in the medial entorhinal cortex , 2013, Nature Neuroscience.

[68]  Yumiko Umino,et al.  Speed, Spatial, and Temporal Tuning of Rod and Cone Vision in Mouse , 2008, The Journal of Neuroscience.

[69]  T. Cronin,et al.  The UV visual world of fishes: a review , 1999 .

[70]  Vivek Jayaraman,et al.  Visually Guided Behavior and Optogenetically Induced Learning in Head-Fixed Flies Exploring a Virtual Landscape , 2019, Current Biology.

[71]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[72]  T Baden,et al.  The Retinal Basis of Vertebrate Color Vision. , 2019, Annual review of vision science.

[73]  M. Kamermans,et al.  Silent-substitution stimuli silence the light responses of cones but not their output. , 2019, Journal of vision.