Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3

[1]  N. Wu,et al.  Direct resistance profile for an electrical pulse induced resistance change device , 2005 .

[2]  C. Jia,et al.  Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. , 2005, Physical review letters.

[3]  N. Mathur,et al.  Materials science: Changing face of the chameleon , 2005, Nature.

[4]  Markus Janousch,et al.  Valence states of Cr and the insulator-to-metal transition in Cr-doped Sr Ti O 3 , 2005 .

[5]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[6]  Sergei V. Kalinin,et al.  Surface stability of epitaxial SrRuO3 films , 2005 .

[7]  V.V. Zhirnov,et al.  Memory technology for post CMOS era , 2005, IEEE Circuits and Devices Magazine.

[8]  Alexander M. Grishin,et al.  Giant resistance switching in metal-insulator-manganite junctions : Evidence for Mott transition , 2005 .

[9]  R. Waser,et al.  Piezoresponse in the light of surface adsorbates: Relevance of defined surface conditions for perovskite materials , 2004 .

[10]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[11]  Thomas Mikolajick,et al.  Material Aspects in Emerging Nonvolatile Memories , 2004 .

[12]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[13]  C. Jia,et al.  High-Resolution Transmission Electron Microscopy Using Negative Spherical Aberration , 2004, Microscopy and Microanalysis.

[14]  California,et al.  Field-induced resistive switching in metal-oxide interfaces , 2004, cond-mat/0402687.

[15]  J. Buban,et al.  Atomic-scale model of the grain boundary potential in perovskite oxides , 2003 .

[16]  Rainer Waser,et al.  Resistive switching in metal–ferroelectric–metal junctions , 2003 .

[17]  Y. Ikuhara,et al.  Conducting nanowires in insulating ceramics , 2003, Nature materials.

[18]  R. D. Gould,et al.  Monte Carlo simulation of current–voltage characteristics in metal–insulator–metal thin film structures , 2003 .

[19]  R. Gu,et al.  Theory of electric-field induced metal-insulator transition , 2003 .

[20]  Tx,et al.  Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface , 2002, cond-mat/0212464.

[21]  P. Levy,et al.  Non-volatile magnetoresistive memory in phase separated La$_{0.325}$Pr$_{0.300}$Ca$_{0.375}$MnO$_3$ , 2002, cond-mat/0202261.

[22]  K. Szot,et al.  Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. , 2002, Physical review letters.

[23]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[24]  G. Duscher,et al.  Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3. , 2001, Physical review letters.

[25]  D. Bremaud,et al.  Electrical current distribution across a metal–insulator–metal structure during bistable switching , 2001, cond-mat/0104452.

[26]  K. Terakura,et al.  Spin and orbital polarizations around oxygen vacancies on the (001) surfaces of SrTiO3 , 2000 .

[27]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[28]  S. Q. Liu,et al.  Electric-pulse-induced reversible resistance change effect in magnetoresistive films , 2000 .

[29]  E. Salje,et al.  LETTER TO THE EDITOR: Sheet superconductivity in twin walls: experimental evidence of ? , 1998 .

[30]  Yimei Zhu,et al.  Structural Defects and the Origin of the Second Length Scale in SrTiO 3 , 1998 .

[31]  Jianbin Xu,et al.  Identifying conducting phase from the insulating matrix in percolating metal-insulator nanocomposites by conducting atomic force microscopy , 1998 .

[32]  N. Shanthi,et al.  Electronic structure of electron doped SrTiO 3 : SrTiO 3 − δ and Sr 1 − x La x TiO 3 , 1998 .

[33]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[34]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[35]  K. Szot,et al.  Microscopic nature of the metal to insulator phase transition induced through electroreduction in single‐crystal KNbO3 , 1992 .

[36]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[37]  A. Ray,et al.  Recent advances in the polyfilamentary model for electronic conduction in electroformed insulating films , 1990 .

[38]  L. Bursill,et al.  Structure and reactivity of atomic surfaces of barium titanate under electron irradiation , 1989 .

[39]  Benguigui Simulation of dielectric failure by means of resistor-diode random lattices. , 1988, Physical review. B, Condensed matter.

[40]  H. Pagnia,et al.  Bistable switching in electroformed metal–insulator–metal devices† , 1988 .

[41]  Takayasu Simulation of electric breakdown and resulting variant of percolation fractals. , 1985, Physical review letters.

[42]  Erich Wimmer,et al.  Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule , 1981 .

[43]  J. Narayan,et al.  Aggregation of defects and thermal‐electric breakdown in MgO , 1978 .

[44]  G. Dresselhaus,et al.  Surface defects and the electronic structure of SrTi O 3 surfaces , 1978 .

[45]  D. V. Sulway,et al.  The detection of current filaments in VO2 thin-film switches using the scanning electron microscope , 1973 .

[46]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[47]  D. Morgan,et al.  A model for filament growth and switching in amorphous oxide films , 1970 .

[48]  E. Salje,et al.  Sheet superconductivity in twin walls: experimental evidence of , 1998 .

[49]  C. Hogarth,et al.  Observations of local defects caused by electrical conduction through thin sandwich structures of AgSiO/BaOAg , 1976 .

[50]  G. R. Miller,et al.  Point defects in reduced strontium titanate , 1973 .