On the periods of motives with complex multiplication and a conjecture of Gross-Deligne

We prove that the existence of an automorphism of finite order on a Q-variety X implies the existence of algebraic linear relations between the logarithm of certain periods of X and the logarithm of special values of the Γ-function. This implies that a slight variation of results by Anderson, Colmez and Gross on the periods of CM abelian varieties is valid for a larger class of CM motives. In particular, we prove a weak form of the period conjecture of Gross-Deligne [11, p. 205] 1 . Our proof relies on the arithmetic fixed-point

[1]  V. Maillot,et al.  Conjectures sur les d\'eriv\'ees logarithmiques des fonctions L d'Artin aux entiers n\'egatifs , 2002, math/0201234.

[2]  D. Roessler,et al.  A fixed point formula of Lefschetz type in Arakelov geometry I: statement and proof , 2001, math/0105098.

[3]  D. Roessler,et al.  A fixed point formula of Lefschetz type in Arakelov geometry IV: the modular height of C.M. abelian varieties , 2001, math/0105101.

[4]  P. Colmez Périodes des variétés abéliennes à multiplication complexe , 1993 .

[5]  K. Köhler Equivariant analytic torsion on ℙnℂ , 1993 .

[6]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[7]  Norbert Schappacher Periods of Hecke Characters , 1988 .

[8]  B. Gross On the periods of abelian integrals and a formula of Chowla and Selberg , 1978 .

[9]  I. Singer,et al.  Analytic torsion for complex manifolds , 1973 .

[10]  A. Weil Introduction a L'Etude des Varietes Kahleriennes , 1960 .

[11]  S. Chowla,et al.  On Epstein's Zeta Function (I). , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Roessler,et al.  A fixed point formula of Lefschetz type in Arakelov geometry II: a residue formula , 2002 .

[13]  J. Bismut Equivariant immersions and Quillen metrics , 1995 .

[14]  C. Soulé,et al.  Analytic torsion and the arithmetic Todd genus , 1991 .

[15]  C. Soulé,et al.  Characteristic classes for algebraic vector bundles with hermitian metric. I , 1990 .

[16]  G. Anderson Logarithmic derivatives of Dirichlet $L$-functions and the periods of abelian varieties , 1982 .

[17]  P. Deligne Valeurs de fonctions L et périodes d’intégrales , 1979 .

[18]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .