Control of piezoelectric actuator with hysteresis and creep

Piezoelectric actuators are essential elements for high-precision positioning in many astronomical applications (OPD modulation for fringe tracking systems, control of tip/tilt modes in Adaptive Optics....). This paper proposes a control method to take into account nonlinear dynamics of piezoelectric actuators such as hysteresis and creep. Some simulations demonstrate the effectiveness of the control approach and experimental results are obtained for the creep compensation.

[1]  Gautam Vasisht,et al.  Adaptive vibration cancellation on large telescopes for stellar interferometry , 2008, Astronomical Telescopes + Instrumentation.

[2]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[3]  Theo ten Brummelaar,et al.  SPICA, a new 6T visible beam combiner for CHARA: science, design and interfaces , 2018, Astronomical Telescopes + Instrumentation.

[4]  Romain G. Petrov,et al.  Hierarchical fringe tracker to co-phase and coherence very large optical interferometers , 2016, Astronomical Telescopes + Instrumentation.

[5]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[6]  Jean-Pierre Folcher,et al.  SoC-based real-time controller for piezo-positioning using Matlab/Simulink , 2018, Astronomical Telescopes + Instrumentation.

[7]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[8]  Jean-Pierre Folcher,et al.  H∞ controller design for high sensitivity fringe tracking , 2016, Astronomical Telescopes + Instrumentation.

[9]  Wesley A. Traub,et al.  Fringe-tracking experiments at the IOTA interferometer , 2000, Astronomical Telescopes and Instrumentation.

[10]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[11]  Stéphane Régnier,et al.  Velocity characterization and control strategies for nano-robotic systems based on piezoelectric stick-slip actuators , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[12]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[13]  Miklós Kuczmann Dynamic Preisach hysteresis model , 2010 .

[14]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[15]  Luigi Bruno,et al.  Design and calibration of a piezoelectric actuator for interferometric applications , 2007 .

[16]  Micky Rakotondrabe Modeling and compensation of multivariable creep in multi-DOF piezoelectric actuators , 2012, 2012 IEEE International Conference on Robotics and Automation.

[17]  Alina Voda,et al.  An LQG/LTR approach towards piezoactuator vibration reduction with observer-based hysteresis compensation , 2014 .

[18]  Edward N. Hartley,et al.  Graphical FPGA design for a predictive controller with application to spacecraft rendezvous , 2013, 52nd IEEE Conference on Decision and Control.

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .