Navigation function based visual servo control

In this paper, the mapping between the desired camera feature vector and the desired camera pose (i.e., the position and orientation) is investigated to develop a measurable image Jacobian-like matrix. An image-space path planner is then proposed to generate a desired image trajectory based on this measurable image Jacobian-like matrix and an image space navigation function (NF) (i.e., a special potential field function) while satisfying rigid body constraints. An adaptive, homography-based visual servo tracking controller is then developed to navigate the position and orientation of a camera held by the end-effector of a robot manipulator to a goal position and orientation along the desired image-space trajectory while ensuring the target points remain visible (i.e., the target points avoid self-occlusion and remain in the field-of-view (FOV)) under certain technical restrictions. Due to the inherent nonlinear nature of the problem and the lack of depth information from a monocular system, a Lyapunov-based analysis is used to analyze, the path planner and the adaptive controller.

[1]  Vijay Kumar,et al.  Cooperative Control of Robot Formations , 2002 .

[2]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[3]  Vijay Kumar,et al.  Formation control with configuration space constraints , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[4]  Jian Chen,et al.  2.5D visual servoing with a fixed camera , 2003, Proceedings of the 2003 American Control Conference, 2003..

[5]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[6]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[7]  Daniel E. Koditschek,et al.  Visual servoing via navigation functions , 2002, IEEE Trans. Robotics Autom..

[8]  Warren E. Dixon,et al.  Adaptive homography-based visual servo tracking , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  Warren E. Dixon,et al.  Robust 2.5D visual servoing for robot manipulators , 2003, Proceedings of the 2003 American Control Conference, 2003..

[10]  François Chaumette,et al.  Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods , 2002, IEEE Trans. Robotics Autom..

[11]  Nicholas R. Gans,et al.  An asymptotically stable switched system visual controller for eye in hand robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[12]  François Chaumette,et al.  Optimal Camera Trajectory with Image-Based Control , 2003, Int. J. Robotics Res..

[13]  Koichiro Deguchi,et al.  Optimal Motion Control for Image-Based Visual Servoing by Decoupling Translation and Rotation , 1999 .

[14]  Peter I. Corke,et al.  Performance Tests for Visual Servo Control Systems, with Application to Partitioned Approaches to Visual Servo Control , 2003, Int. J. Robotics Res..

[15]  Warren E. Dixon,et al.  Homography-based visual servo tracking control of a wheeled mobile robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[16]  Koichiro Deguchi,et al.  Optimal motion control for image-based visual servoing by decoupling translation and rotation , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[17]  François Chaumette,et al.  Potential problems of stability and convergence in image-based and position-based visual servoing , 1997 .

[18]  S. Shankar Sastry,et al.  Vision-based follow-the-leader , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[19]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[20]  S. Hutchinson,et al.  A new hybrid image-based visual servo control scheme , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[21]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[22]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[23]  François Chaumette,et al.  2 1/2 D visual servoing: a possible solution to improve image-based and position-based visual servoings , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Radu Horaud,et al.  New Methods for Matching 3-D Objects with Single Perspective Views , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  François Chaumette,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000, International Journal of Computer Vision.

[26]  Warren E. Dixon,et al.  Homography-based visual servo tracking control of a wheeled mobile robot , 2006, IEEE Transactions on Robotics.

[27]  Ezio Malis Contributions a la modelisation et a la commande en asservissement visuel , 1998 .

[28]  A Wetherell,et al.  Performance tests. , 1996, Environmental health perspectives.

[29]  Francois Chaumette,et al.  Potential problems of unstability and divergence in image-based and position-based visual servoing , 1999, 1999 European Control Conference (ECC).

[30]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[31]  Olivier Faugeras,et al.  Three-Dimensional Computer Vision , 1993 .

[32]  François Chaumette,et al.  2d 1/2 visual servoing with respect to a planar object , 1997 .