A High-Order Method for Weakly Compressible Flows

In this work, we introduce an IMEX discontinuous Galerkin solver for the weakly compressible isentropic Euler equations. The splitting needed for the IMEX temporal integration is based on the recently introduced reference solution splitting [32, 52], which makes use of the incompressible solution. We show that the overall method is asymptotic preserving . Numerical results show the performance of the algorithm which is stable under a convective CFL condition and does not show any order degradation.

[1]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[2]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[3]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[4]  Spencer J. Sherwin,et al.  A generic framework for time-stepping partial differential equations (PDEs): general linear methods, object-oriented implementation and application to fluid problems , 2011 .

[5]  Michael Woopen,et al.  An HDG Method for Unsteady Compressible Flows , 2015 .

[6]  Claus-Dieter Munz,et al.  A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..

[7]  G. Russo,et al.  IMEX RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS WITH DIFFUSIVE RELAXATION , 2012 .

[8]  Hans Petter Langtangen,et al.  Modern Software Tools for Scientific Computing , 1997, Birkhäuser Boston.

[9]  Jérôme Jaffré,et al.  Implicit-explicit time stepping with spatial discontinuous finite elements , 2003 .

[10]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[11]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[12]  SEBASTIANO BOSCARINO Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..

[13]  W. Yong A note on the zero Mach number limit of compressible Euler equations , 2005 .

[14]  Mária Lukácová-Medvid'ová,et al.  Adaptive discontinuous evolution Galerkin method for dry atmospheric flow , 2014, J. Comput. Phys..

[15]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[16]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[17]  Giacomo Dimarco,et al.  Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..

[18]  Willem Hundsdorfer,et al.  IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..

[19]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[20]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[21]  Jörn Sesterhenn,et al.  On the Cancellation Problem in Calculating Compressible Low Mach Number Flows , 1999 .

[22]  Bernardo Cockburn,et al.  A Hybridizable Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations , 2010, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.

[23]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[24]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[25]  Adrian Sandu,et al.  Partitioned and Implicit–Explicit General Linear Methods for Ordinary Differential Equations , 2013, J. Sci. Comput..

[26]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[27]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[28]  Bernardo Cockburn,et al.  A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2010 .

[29]  Per-Olof Persson,et al.  High-Order LES Simulations using Implicit-Explicit Runge-Kutta Schemes , 2011 .

[30]  Sebastian Noelle,et al.  IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows , 2014 .

[31]  Francis X. Giraldo,et al.  Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments , 2013, J. Comput. Phys..

[32]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[33]  Jun Zou,et al.  Some new additive Runge-Kutta methods and their applications , 2006 .

[34]  Francis X. Giraldo,et al.  Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling , 2010, SIAM J. Sci. Comput..

[35]  Jan S. Hesthaven,et al.  Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes , 2007, J. Comput. Phys..

[36]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[37]  Haijin Wang,et al.  Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-Explicit Time-Marching for Advection-Diffusion Problems , 2015, SIAM J. Numer. Anal..

[38]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[39]  Jochen Schütz,et al.  A new stable splitting for singularly perturbed ODEs , 2016 .

[40]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[41]  Jochen Schütz,et al.  Flux Splitting for Stiff Equations: A Notion on Stability , 2014, J. Sci. Comput..

[42]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[43]  Joachim Sch NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[44]  Michael Woopen,et al.  A Hybridized DG/Mixed Scheme for Nonlinear Advection-Diffusion Systems, Including the Compressible Navier-Stokes Equations , 2012 .

[45]  Francis X. Giraldo,et al.  High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .

[46]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[47]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[48]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[49]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[50]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[51]  Mária Lukácová-Medvid'ová,et al.  Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation , 2017, J. Comput. Phys..

[52]  Michael Woopen,et al.  A Hybridized Discontinuous Galerkin Method for Unsteady Flows with Shock-Capturing , 2014 .

[53]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[54]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[55]  Klaus Kaiser,et al.  A New Stable Splitting for the Isentropic Euler Equations , 2016, Journal of Scientific Computing.

[56]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[57]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[58]  Boris Schling The Boost C++ Libraries , 2011 .

[59]  Sang-Hyeon Lee,et al.  Cancellation problem of preconditioning method at low Mach numbers , 2007, J. Comput. Phys..