Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures.

We demonstrate experimentally that by engineering the structural asymmetry of the primary unit cell of a symmetrically nanopatterned metallic film the optical transmission becomes strongly dependent on the polarization of the incident wave. By considering a specific plasmonic structure consisting of square arrays of nanoscale asymmetric cruciform apertures we show that the enhanced optical anisotropy is induced by the excitation inside the apertures of localized surface plasmon resonances. The measured transmission spectra of these plasmonic arrays show a transmission maximum whose spectral location can be tuned by almost 50% by simply varying the in-plane polarization of the incident photons. Comprehensive numerical simulations further prove that the maximum of the transmission spectra corresponds to polarization-dependent surface plasmon resonances tightly confined in the two arms of the cruciform aperture. Despite this, there are isosbestic points where the transmission, reflection, and absorption spectra are polarization-independent, regardless of the degree of asymmetry of the apertures.

[1]  Nicolae C. Panoiu,et al.  Subwavelength Nonlinear Plasmonic Nanowire , 2004 .

[2]  J. Dadap,et al.  Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures. , 2007, Optics letters.

[3]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[4]  T. Ebbesen,et al.  Absorption-induced transparency. , 2011, Angewandte Chemie.

[5]  Kevin J. Malloy,et al.  Second harmonic generation from a nanopatterned isotropic nonlinear material , 2006 .

[6]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[7]  Carsten Rockstuhl,et al.  Resonances in complementary metamaterials and nanoapertures. , 2008, Optics express.

[8]  Carsten Rockstuhl,et al.  Babinet’s principle for optical frequency metamaterials and nanoantennas , 2007 .

[9]  Martin Wegener,et al.  Three‐Dimensional Bi‐Chiral Photonic Crystals , 2009 .

[10]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[11]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[12]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[13]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[14]  G. Schatz,et al.  Ultrafast pulse excitation of a metallic nanosystem containing a Kerr nonlinear material , 2006 .

[15]  Paul Ruchhoeft,et al.  Modelling of infrared bandpass filters using three-dimensional FDTD method , 2005 .

[16]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[17]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[18]  Martin Wegener,et al.  3D Bi‐chiral Photonic Crystals: Three‐Dimensional Bi‐Chiral Photonic Crystals (Adv. Mater. 46/2009) , 2009 .

[19]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[20]  D. Pohl,et al.  Resonant optical antennas and single emitters , 2007 .

[21]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[22]  Ann Roberts,et al.  Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays , 2009 .

[23]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[24]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[25]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[26]  A Paul Alivisatos,et al.  Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. , 2005, Nano letters.

[27]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[28]  J. Hajnal,et al.  Sub-wavelength imaging at radio frequency , 2006 .

[29]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[30]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[31]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[32]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[33]  Remigius Zengerle,et al.  Pairs of metallic crosses as a left-handed metamaterial with improved polarization properties. , 2006, Optics express.

[34]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[35]  Vasyl G. Kravets,et al.  Plasmonic blackbody : Almost complete absorption of light in nanostructured metallic coatings , 2008 .

[36]  Naomi J Halas,et al.  Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. , 2003, Annual review of biomedical engineering.

[37]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[38]  Ann Roberts,et al.  Angle-robust resonances in cross-shaped aperture arrays , 2010 .

[39]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[40]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[41]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[42]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .