Soft-Chemical Synthetic Nonstoichiometric Bi2O2.33 Nanoflower: A New Room-Temperature Ferromagnetic Semiconductor

Bi2O2.33 nanoflowers with pure phase were directly prepared via a solvothermal route. The magnetism behavior of the product was investigated, and the data clearly revealed the room-temperature ferromagnetism of the synthetic sample. This nonstoichiometric bismuth oxide should be the diluted magnetic semiconductors (DMSs). XPS measurements showed that the room-temperature ferromagnetism might be derived from the presence of Bi2+ in the structure. The achievement of the nonstoichiometric Bi2O2.33 DMSs might pave the way for a new understanding of the underlying ferromagnetic mechanism in DMSs materials.

[1]  S. Kamat,et al.  Development of lead free magnetoelectric laminates of Na0.5Bi0.5TiO3–Tb0.3Dy0.7Fe1.95 for power generation , 2014 .

[2]  Ranber Singh Unexpected magnetism in nanomaterials , 2013 .

[3]  S. Molloi,et al.  Origin of magnetism in undoped TiO2 nanotubes , 2013, Nanotechnology.

[4]  Hardev S. Saini,et al.  Accounting oxygen vacancy for half-metallicity and magnetism in Fe-doped CeO2 dilute magnetic oxide , 2013 .

[5]  Hardev S. Saini,et al.  Variation of half metallicity and magnetism of Cd1−xCrxZ (Z=S, Se and Te) DMS compounds on reducing dilute limit , 2013 .

[6]  Hardev S. Saini,et al.  Emergence of half metallicity in Cr-doped GaP dilute magnetic semiconductor compound within solubility limit , 2012 .

[7]  W. Tahir,et al.  First principles study of structural, electronic and magnetic properties of Mg1−xMnxTe alloys , 2011 .

[8]  M. Peng,et al.  Discussion on the origin of NIR emission from Bi-doped materials , 2011 .

[9]  Jinlong Yang,et al.  Room‐Temperature Ferromagnetic Silver Vanadium Oxide (Ag1.2V3O8): A Magnetic Semiconductor Nanoring Structure , 2010 .

[10]  A. Shaukat,et al.  First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1−xTMxS (TM = Fe, Co and Ni) , 2010 .

[11]  A. H. Reshak,et al.  Ab-initio calculations of Co-based diluted magnetic semiconductors Cd1−xCoxX (X=S, Se, Te) , 2010 .

[12]  N. Ikram,et al.  First principles calculations of electronic structure and magnetic properties of Cr-based magnetic semiconductors Al1−xCrxX (X=N, P, As, Sb) , 2010 .

[13]  S. Siddiqi,et al.  First principles density functional calculations of half-metallic ferromagnetism in Zn1-xCrxS and Cd1-xCrxS , 2010 .

[14]  Xiong Wang,et al.  Ultraviolet-Emitting Bi2O2.33 Nanosheets Prepared by Electrolytic Corrosion of Metal Bi , 2010 .

[15]  D. Wexler,et al.  Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application , 2009, Nanotechnology.

[16]  M. Tanveer,et al.  Spin-polarized structural, electronic, and magnetic properties of diluted magnetic semiconductors Cd(1-x)Mn(x)S and Cd(1-x)Mn(x)Se in zinc blende phase. , 2009, The journal of physical chemistry. A.

[17]  John Wang,et al.  Ferromagnetic, ferroelectric, and fatigue behavior of (111)-oriented BiFeO3/(Bi1/2Na1/2)TiO3 lead-free bilayered thin films , 2009 .

[18]  T. Wojtowicz,et al.  Zn(1-x)MnxTe diluted magnetic semiconductor nanowires grown by molecular beam epitaxy. , 2008, Nano letters.

[19]  M. Venkatesan,et al.  Charge-transfer ferromagnetism in oxide nanoparticles , 2008 .

[20]  M. Knupfer,et al.  Energy level alignment and injection barriers at spin injection contacts between La0.7Sr0.3MnO3 and organic semiconductors , 2008 .

[21]  Sung-Hwan Han,et al.  Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors , 2006 .

[22]  Koji Ando,et al.  Seeking Room-Temperature Ferromagnetic Semiconductors , 2006, Science.

[23]  Jean-Louis Coutaz,et al.  Non-stoichiometric semiconductor materials for terahertz optoelectronics applications , 2005 .

[24]  G. Schmidt,et al.  Concepts for spin injection into semiconductors—a review , 2005 .

[25]  M. Venkatesan,et al.  Donor impurity band exchange in dilute ferromagnetic oxides , 2005, Nature materials.

[26]  A. Agarwal,et al.  Effect of Bi2O3 on electron paramagnetic resonance, optical transmission and conductivity in vanadyl-doped Bi2O3·K2O·B2O3 glasses , 2004 .

[27]  Stuart A. Wolf,et al.  Spintronics: A Spin-Based Electronics Vision for the Future , 2001, Science.

[28]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[29]  H. Ohno,et al.  Making nonmagnetic semiconductors ferromagnetic , 1998, Science.

[30]  M. Schuisky,et al.  Epitaxial growth of Bi2O2.33 by halide Cvd , 1996 .

[31]  R. Snyder,et al.  Powder Diffraction Patterns and Structures of the Bismuth Oxides , 1978 .

[32]  R. M. Imamov,et al.  Special features of the crystal structure of bismuth oxides , 1973 .

[33]  E. M. Levin,et al.  Polymorphism of Bismuth Sesquioxide. I. Pure Bi2O3 , 1964, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[34]  Dingsheng Yuan,et al.  Facile preparation of orange-like Bi2O2.33 microspheres for high performance supercapacitor application , 2013 .

[35]  James L. Gole,et al.  Defect‐Related Optical Behavior in Surface Modified TiO2 Nanostructures , 2005 .

[36]  David P. Norton,et al.  Wide band gap ferromagnetic semiconductors and oxides , 2003 .

[37]  K. Bachmann,et al.  Non-stoichiometry in semiconductors : proceedings of Symposium A3 on Non-Stoichiometry in Semiconductors of the International Conference on Advanced Materials-ICAM 91, Strasbourg, France, 27-31 May, 1991 , 1992 .