Distances between bicliques and structural properties of bicliques in graphs

A \emph{biclique} is a maximal bipartite complete induced subgraph of $G$. The \emph{biclique graph} of a graph $G$, denoted by $KB(G)$, is the intersection graph of the family of all bicliques of $G$. In this work we give a natural definition of the distance between bicliques in a graph. We give a useful formula that relates the distance between bicliques in a graph $G$ and the distance between their respectives vertices in $KB(G)$. As application of the concept of the distance between bicliques, we show some results about the structure of bicliques in a graph and properties of the biclique graph. We obtain some corollaries from this result and finally we present some interesting related open problems.

[1]  Miguel A. Pizaña Distances and Diameters on Iterated Clique Graphs , 2001, Electron. Notes Discret. Math..

[2]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[3]  Jinyan Li,et al.  Efficient Mining of Large Maximal Bicliques , 2006, DaWaK.

[4]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[5]  Philippe G. H. Lehot An Optimal Algorithm to Detect a Line Graph and Output Its Root Graph , 1974, JACM.

[6]  Gowtham Atluri,et al.  Discovering coherent value bicliques in genetic interaction data , 2010, KDD 2010.

[7]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[8]  Carl Kingsford,et al.  Uncovering Genomic Reassortments among Influenza Strains by Enumerating Maximal Bicliques , 2008, 2008 IEEE International Conference on Bioinformatics and Biomedicine.

[9]  Jayme Luiz Szwarcfiter,et al.  Biclique graphs and biclique matrices , 2010, J. Graph Theory.

[10]  F. Escalante Über iterierte Clique-Graphen , 1973 .

[11]  Fred S. Roberts,et al.  A Characterization of Clique Graphs. , 1971 .

[12]  Leandro Montero,et al.  On the Iterated Biclique Operator , 2013, J. Graph Theory.

[13]  R. Hamelink A partial characterization of clique graphs , 1968 .

[14]  Jayme Luiz Szwarcfiter,et al.  Iterated clique graphs with increasing diameters , 1998, J. Graph Theory.

[15]  Edward Szpilrajn-Marczewski Sur deux propriétés des classes d'ensembles , 1945 .

[16]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[17]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[18]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[19]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[20]  Willem H. Haemers,et al.  Bicliques and Eigenvalues , 2001, J. Comb. Theory, Ser. B.

[21]  Bruce Hedman,et al.  Clique graphs of time graphs , 1984, J. Comb. Theory, Ser. B.

[22]  Celina M. H. de Figueiredo,et al.  The complexity of clique graph recognition , 2009, Theor. Comput. Sci..