Dynamic Model of Oscillation-Assisted Cylindrical Plunge Grinding With Chatter

In this paper, the mathematical model of the oscillation-assisted cylindrical plunge grinding process has been presented. In this model, the dynamical properties of the grinder, self-excited vibration (regenerative chatter), and nonlinear behavior of the grinding force have been taken into consideration. This mathematical model has been applied to analyze both formation and development of chatter on the workpiece and the grinding wheel surface during oscillation-assisted cylindrical plunge grinding. The frequency response function (FRF), describing dynamical properties of the grinder, has been determined by means of modal experiment. The model has been implemented in matlab-simulink environment in order to perform simulations. The results of the simulations confirmed the antiregenerative properties of the oscillations of the workpiece rotational movement during cylindrical plunge grinding.